
ETH ZÜRICH

SEMESTER THESIS

Search for Non-Interactive Entanglement
Distillation Protocols Aided by Numerical

Optimization

Author:
Yves SALATHÉ

Advisor:
Dejan DUKARIC

Supervisor:
Prof. Dr. Stefan WOLF

March 21, 2011



Abstract

Entanglement is a property of physical reality that cannot be explained by the classical
laws of physics [1]. In quantum cryptography, entangled pairs of photons are used
to establish secure channels and in quantum computing entanglement is a resource
that can be used to send the state of a qubit from one location to another [2] using
classical communication. An important question in the context of physical realizations
of entangled systems is whether entanglement can be restored from the imperfectly
entangled systems resulting from decoherence. The Schmidt projection method by
Bennet et. al. [3] can concentrate entanglement from many copies of an entangled
pure state into a smaller set of perfectly entangled states. Unlike many protocols that
were later developed for mixed states [4, 5, 6, 7, 8], the Schmidt projection method
works without communication. On the other hand, the Schmidt projection method only
becomes efficient if a large number of copies of the initially entangled state are given.
In the first part of this work we show that the Schmidt projection method cannot be used
to increase the fully entangled fraction if used with only two copies of an entangled pure
input state and under the assumption that no post selection is allowed. Conversely, we
show that this task is possible if one has 3 copies of a pure input pair instead. From the
protocol for 3 copies of a pure state, we derive a non-interactive protocol that works for
certain mixed states. In the second part we demonstrate the possibility to numerically
find entanglement distillation protocols that do not use communication by solving a
high dimensional optimization problem using the evolutionary algorithm CMA-ES [9].



Contents

Contents 1

1 Introduction 4

2 Foundations 6
2.1 The Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Many Qubits: Combined Systems . . . . . . . . . . . . . . . . . . . 7
2.3 Measurements, Mixed States and the Partial Trace . . . . . . . . . . . 8
2.4 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Entanglement Measures 12
3.1 Local Operations and Classical Communication . . . . . . . . . . . . 12
3.2 Entropy of Entanglement . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Fidelity and the Fully Entangled Fraction . . . . . . . . . . . . . . . 13

4 Entanglement Distillation Protocols 16
4.1 Single Pair Purification . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 Protocols without communication . . . . . . . . . . . . . . . . . . . 17
4.3 General Limitations and Optimality . . . . . . . . . . . . . . . . . . 17
4.4 A Note On The Schmidt Projection Method For Two Copies . . . . . 18

5 Numerical Optimization 21
5.1 Parameterization of Unitary Matrices . . . . . . . . . . . . . . . . . . 22
5.2 Black-Box Optimization With CMA-ES . . . . . . . . . . . . . . . . 23
5.3 Results for 3 copies of a pure initial state with 2 ancilla qubits per party 24

5.3.1 Optimization over a Single Orthogonal Matrix . . . . . . . . 24
5.3.2 Unrestricted Optimization over 2 Unitary Matrices . . . . . . 26

5.4 Results for 2 copies of a pure initial state . . . . . . . . . . . . . . . . 29
5.5 Results for 3 copies of a Werner state . . . . . . . . . . . . . . . . . . 29

6 Conclusions 33

A Proof of Theorem 4.3.1 35

B Proof of Theorem 4.4.1 37

C Tables 40
C.1 Entanglement Distillation Protocols . . . . . . . . . . . . . . . . . . 40
C.2 Limits to Distillability . . . . . . . . . . . . . . . . . . . . . . . . . . 42
C.3 Optimization Runs . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



D Source Code 49
D.1 ANGLE_CROSSOVER.M . . . . . . . . . . . . . . . . . . . . . . . . . 49
D.2 CHOOSE_K_FROM_N.M . . . . . . . . . . . . . . . . . . . . . . . . 49
D.3 COMPUTATIONAL_BASIS.M . . . . . . . . . . . . . . . . . . . . . . 50
D.4 CONDITIONAL_SWAP.M . . . . . . . . . . . . . . . . . . . . . . . . 50
D.5 CROSSOVER.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
D.6 DECODE_DISCRETE_ANGLES.M . . . . . . . . . . . . . . . . . . . . 51
D.7 ENTROPY_OF_ENTANGLEMENT.M . . . . . . . . . . . . . . . . . . 52
D.8 EXPECTED_E.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
D.9 FITNESS.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.10 GATES.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
D.11 HERMITIAN_INVERSE.M . . . . . . . . . . . . . . . . . . . . . . . . 54
D.12 HERMITIAN.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D.13 IDENTITY.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
D.14 INIT_FITNESS_ARGS.M . . . . . . . . . . . . . . . . . . . . . . . . 56
D.15 INIT_OPERATOR_ARGS.M . . . . . . . . . . . . . . . . . . . . . . . 58
D.16 MATRIX_DIFFERENCES.M . . . . . . . . . . . . . . . . . . . . . . . 59
D.17 MATRIX_DISTANCE.M . . . . . . . . . . . . . . . . . . . . . . . . . 60
D.18 MATRIX_DISTANCE_TO_FUN.M . . . . . . . . . . . . . . . . . . . . 60
D.19 MEASUREMENT_UNITARY.M . . . . . . . . . . . . . . . . . . . . . . 60
D.20 OPERATOR_ANY.M . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
D.21 OPERATOR_NORMALIZED.M . . . . . . . . . . . . . . . . . . . . . . 62
D.22 ORTHOGONAL_DERIV.M . . . . . . . . . . . . . . . . . . . . . . . . 62
D.23 ORTHOGONAL_DISCRETE.M . . . . . . . . . . . . . . . . . . . . . . 63
D.24 ORTHOGONAL_INVERSE.M . . . . . . . . . . . . . . . . . . . . . . 64
D.25 ORTHOGONAL.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
D.26 PENALTY_IDENT.M . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
D.27 PERMUTATION.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
D.28 PLOTCMAESDAT_FITNESS.M . . . . . . . . . . . . . . . . . . . . . . 67
D.29 PLOT_FIDELITY.M . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
D.30 QUBIT_STATES.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
D.31 READ_ANCILLA_STATES.M . . . . . . . . . . . . . . . . . . . . . . 74
D.32 SCHMIDT_PROJECTION_MEASUREMENT_UNITARY.M . . . . . . . . 75
D.33 SCHMIDT_PROJECTION_METHOD_UNITARY.M . . . . . . . . . . . . 75
D.34 SKEW_SYMMETRIC_INVERSE.M . . . . . . . . . . . . . . . . . . . 76
D.35 SKEW_SYMMETRIC.M . . . . . . . . . . . . . . . . . . . . . . . . . 76
D.36 STANDARDIZATION_UNITARY.M . . . . . . . . . . . . . . . . . . . 77
D.37 SYMMETRIC.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.38 TEST_CONTOPT_3COPIES.M . . . . . . . . . . . . . . . . . . . . . . 77
D.39 TEST_CONTOPT_3COPIES_SYMMETRY.M . . . . . . . . . . . . . . 77
D.40 TEST_CONTOPT_3COPIES_SYMMETRY_ONLYREAL.M . . . . . . . 78
D.41 TEST_CONTOPT.M . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
D.42 TEST_SCHMIDT_PROJECTION_GENERAL.M . . . . . . . . . . . . . 83
D.43 TRX_FAST_ARGS.M . . . . . . . . . . . . . . . . . . . . . . . . . . 83
D.44 TRX_FAST.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.45 TRX.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
D.46 UNITARITY_PENALTY.M . . . . . . . . . . . . . . . . . . . . . . . . 87
D.47 UNITARY_CONTINUOUS.M . . . . . . . . . . . . . . . . . . . . . . . 88
D.48 UNITARY_DISCRETE.M . . . . . . . . . . . . . . . . . . . . . . . . . 88
D.49 UNITARY.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
D.50 UPPER_E.M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2



Bibliography 91

3



Chapter 1

Introduction

The field of quantum information theory deals with the implications of quantum me-
chanics on our ability to process information and vice-versa combines the known theo-
retical results from information theory and related fields with quantum theory to make
predictions about the behaviour of nature. One of the most surprising features of quan-
tum mechanics is entanglement. In 1935, Einstein et. al. [10] argued that the so called
“reduction of the wave packet”, i.e. the way measurements are described in quantum
mechanics leads to a paradoxical situation where the probabilities of different results
of a measurement that is performed on one of two or more spatially separated systems
will affect the state of the combined system even though the systems are not able to
interact by means of any known physical interaction. They conclude that quantum me-
chanics is thus unlikely to describe nature in a complete way. In 1964, John Bell [1]
found a way to test whether such instantaneous effects exist in nature by formulating
an inequality that limits the correlations of simultaneous local measurements on two
subsystems under the assumption that the subsystems cannot interact during the time
the measurements are performed. John Bell predicted that if nature acts quantum me-
chanically, his inequality will be violated by so called entangled states. Aspect et. al.
verified the violation of the Bell inequalities by experiment. To our present knowledge
exactly the opposite of Einstein’s conclusion is true: we need quantum mechanics to
describe effects like entanglement. Since then, a lot of research has dealt with the ques-
tion whether we can use entanglement to perform useful tasks. In 1984, Bennet and
Brassard [11] proposed a secure way to exchange one time pads for encrypted com-
munication. In 1992 Bennet and Wiesner [3] showed that it is possible to send two
classical bits by sending a so called qubit (a quantum mechanical two-state system), if
the sender (Alice) and the receiver (Bob) initially share an entangled pair of qubits. In
1993, Bennet et. al. [2] developed a quantum protocol that uses an entangled pair of
qubits to send the state of a quantum bit from one location to another by sending two
classical bits. In fact, entanglement has become a resource to perform different tasks
that would be impossible without it.

However, a major problem with physical implementations of these ideas is that the
systems cannot be perfectly isolated. The system interacts with the environment in a
way that cannot be perfectly predicted and controlled. This so called decoherence can
destroy entanglement or make it weaker. So we need a way to restore it. This is where
entanglement distillation comes into play. Bennet et. al. [12] were the first to develop
two protocols that can concentrate entanglement from many copies of imperfectly en-
tangled pairs of qubits into a smaller set of perfectly entangled qubits. One of the two
protocols (called Schmidt projection) has the surprising property that it can be exe-
cuted without the need of communication between the two distinct subsystems. While

4



the Schmidt projection protocol was shown to be asymptotically optimal [13], there
are two drawbacks: it only works for a large number of copies and only for pure states.
The effect of decoherence is that the state of the system is transformed into a mixture
of different states. To account for this kind of randomness, different protocols were
found in various preceding publications that all deal with a certain type of mixted state
[4, 5, 6, 7, 8] . Previous research on limits to the existence of non-interactive protocols
for mixed states [7, 8, 14, 15] has revealed that there are many states for which en-
tanglement distillation without communication is not possible. In the present work we
further investigate the possibility of entanglement distillation without communication
by summarizing the known results about the existence and non-existence of protocols
in Chapter 4 and proving that the Schmidt projection method does not work without
post-selection if only two copies of an imperfectly entangled state are given. In the
second part of the work (Chapter 5) we demonstrate the possibility to find entangle-
ment protocols by numerical optimization. Chapter 2 and 3 provide the foundations to
introduce the notation and definitions needed to state the results of the present work.

5



Chapter 2

Foundations

The purpose of this chapter is to give an overview of the notation and concepts that are
used in the present work.

2.1 The Qubit
The basic element of quantum information science, the quantum bit (qubit), is a phys-
ical system that acts quantum mechanical and has two distinguishable states. For such
systems, the postulates of quantum mechanics (see e.g. [16, 17, 18]) imply that its
state is described by a wave function, allowing it to be in any superposition of two ba-
sis states. One usually writes the state of the Qubit in Dirac’s Ket notation: |ψ〉 ∈H2,
where H2 is the two-dimensional Hilbert space, which means that the state is repre-
sented by a complex-valued two-dimensional vector. One defines the two vectors

|0〉=
(

1
0

)
, |1〉=

(
0
1

)
. (2.1)

The set {|0〉, |1〉} is called “computational basis”. An arbitrary one-qubit pure state can
then be written as:

|ψ〉=
(

α

β

)
= α|0〉+β |1〉, (2.2)

where α,β ∈ C2 and the states |0〉 and |1〉 are orthogonal i.e. 〈0|1〉= 〈1|0〉= 0. Note
that the flipped Ket denotes the conjugate transpose of the corresponding vector, i.e.
〈ψ|= (|ψ〉)† and is called “Bra”.

Since the qubit is quantum mechanical, its time-evolution is described by the time-
dependent Schrödinger equation

ih̄
∂

∂ t
|ψ(t)〉= Ĥ(t)|ψ(t)〉, (2.3)

where Ĥ(t) is the Hamiltonian operator and h̄ is Planks constant (see e.g. [19] for its
physical value). The general solution of this equation can be written as

|ψ(t)〉= e−
i
h̄
∫ t

0 Ĥ(t̃)dt̃ |ψ(0)〉. (2.4)

This can be verified by inserting (2.4) into (2.3). Since the Hamiltonian operator Ĥ
is hermitean, the linear operator T̂ := exp(− i

h̄
∫ t

0 Ĥ(t̃)dt̃) on the right hand side of
Equation (2.4) is unitary:

T̂ †T̂ = T̂ T̂ † = e−
i
h̄
∫ t

0 Ĥ(t̃)dt̃e+
i
h̄
∫ t

0 Ĥ(t̃)dt̃ = e
i
h̄ (
∫ t

0 Ĥ(t̃)dt̃−
∫ t

0 Ĥ(t̃)dt̃) = e = 1. (2.5)

6



Operations on qubits are therefore represented by unitary matrices.
The above statement leads to the so called quantum parallelism, which comes from

the fact that the unitary operation U is linear. Thus, if it is applied on a state given by
Equation (2.2) one gets

U|ψ〉= U(α|0〉+β |1〉) = αU|0〉+βU|1〉, (2.6)

so the unitary operation acts on both basis states in the superposition simultaneously!
This is one of the reasons why quantum algorithms can have lower complexity than the
corresponding classical algorithms. Conversely, it is not so easy to design algorithms
that outperform their classical counterparts since the state vector cannot be completely
determined with a single measurement and because the measurement itself modifies
the state vector, as will be detailed in Section 2.3.

2.2 Many Qubits: Combined Systems
To see how a system of two or more qubits can be composed from the ones of single
qubits, it is best to think about how one would combine two classical bits. Such a
classical combined system of two bits is described by the states of the individual bits.
Since every classical bit can take on the values 0 or 1 (two possible characters), there
are four possible states for the combined system: 00 01 10 and 11 (string over an
alphabet of two characters). As seen in Section 2.1, this stands in contrast to quantum
systems, where each qubit is described by a two-dimensional complex-valued vector,
the components of which having the meaning of complex probability amplitudes for the
event that the systems are in their respective two distinct basis states (usually denoted as
|0〉 and |1〉). As for the classical combined system, a two qubit system is defined such
that it has four different basis states |00〉, |01〉, |10〉 and |11〉. The difference lies in the
postulate that such a quantum system has to be described by a four-dimensional vector,
each component describing the probability amplitude for the corresponding basis state.
In fact, the state of the combined system is contained in the tensor product of the Hilbert
spaces HA and HB of the individual subsystems:

HAB = HA⊗HB, (2.7)

where the basis vectors that span HAB are the four different tensor products of the basis
states of the single qubit systems, i.e.

|00〉= |0〉⊗ |0〉, (2.8)
|01〉= |0〉⊗ |1〉, (2.9)
|10〉= |1〉⊗ |0〉, (2.10)
|11〉= |1〉⊗ |1〉. (2.11)

(2.12)

An arbitrary state |ψ〉 of the combined system is then written in terms of these basis
states, i.e.

|ψ〉= α|00〉+β |01〉+ γ|10〉+δ |11〉, (2.13)

with complex coefficients α,β ,γ,δ ∈ C.
This has wide ranging consequences: While each individual qubit, if in a pure

state, has 3 degrees of freedom (the real and imaginary parts of the two coefficients
α and β in (2.2) minus one degree of freedom due to the normalization constraint),

7



the pure state of the combined system has 7 degrees of freedom (again the real and
imaginary parts of the four coefficients α,β ,γ and δ minus one degree of freedom due
to the normalization constraint). So the combined system has actually more degrees
of freedom than just the sum of the degrees of freedom of the individual systems!
This already indicates that there are states of the combined system, that cannot be
represented by just combining the vectors that describe the states of the individual
system. In Section 2.4, particular examples of such states will be presented. Another
important consequence can be seen from the way the number of basis states increases:
For a system of n qubits, the states that form a complete basis set can be labelled by all
possible n-bit-strings, of which there are exactly 2n. So the cardinality of the complete
set of basis states, and hence the dimensionality, grows exponentially! This indicates
how hard it is to simulate a large-scale quantum system on a classical computer.

2.3 Measurements, Mixed States and the Partial Trace
In quantum mechanics, a measurement is described by a set of operators {Mi | i =
1, · · · ,n} that map the pre-measurement state to the post-measurement state that cor-
responds to a particular measurement result. Before a certain quantity is measured, it
may in fact not yet be determined for a certain state. Mathematically, the probability to
measure the result corresponding to Mi if the system is in a pure state |ψ〉 is

pi := 〈ψ|Mi|ψ〉 (2.14)

. The state |φ〉 after the measurement will be

|φi〉=
Mi|ψ〉√

pi
, (2.15)

when the measurement result is known to correspond to Mi for a certain index i. If the
measurement operators Mi are projection operators, the corresponding measurement is
called projective measurement.

Related to the concept of measurements is the density operator. It is used to de-
scribe classical uncertainty in quantum mechanics. E.g. if one knows a certain mea-
surement has been performed on a system that was in a known state before it was
measured but one does not know the measurement result. In that case, one still knows
the probability pi with which each measurement result is obtained i.e. the probability
pi that the system is in a certain pure post-measurement state |φi〉. This situation, which
is called a mixed state, is described by the density operator

ρ = ∑
i

pi|φi〉〈φi|. (2.16)

Density operators are positive operators i.e. ρ† = ρ and the eigenvalues are real-valued
and non-negative. Furthermore the trace (the sum of diagonal elements which is equal
to the sum of eigenvalues) of density operators is defined to be one, i.e. tr(ρ) = 1. Note
that for a system in a pure state |ψ〉, the density operator ρ corresponding to that state
is the outer product of |ψ〉 with itself: ρ = |ψ〉〈ψ|.

If a measurement is performed on a system in a state described by the density
operator ρ , then the probabilities of the measurement outcomes are determined by

pi = tr(Miρ). (2.17)

The post-measurement state will be determined by

ρi =
MiρM†

i
pi

. (2.18)

8



Another reason for having a mixed state may be that the system in concern interacts
with another system (e.g. the environment), but the state vector for the combined sys-
tem is unknown. Suppose the state vector of the combined system of two subsystems
A and B is |ψ〉, then the density operator ρ of a particular subsystem A will determined
by the so called partial trace over the subsystem B

ρA = trB(|ψ〉〈ψ|). (2.19)

.
The partial trace trB(ρ) is computed by writing the density operator ρ in a basis

where the basis vectors are separable, i.e. {|ψi〉 | |ψi〉 = |ψA,k〉⊗ |ψB,l〉, i = 1, · · · ,d},
where |ψA,k〉 is a state vector of subsystem A and |ψB,l〉 one of subsystem B:

ρ =
dA

∑
i

dB

∑
j

dA

∑
k

dB

∑
l

αi, j(|ψA,i〉〈ψA,k)⊗ (|ψB, j〉〈ψB,l |), (2.20)

Then the partial trace trB(ρ) is

ρBρ =
dA

∑
i

dB

∑
j

dA

∑
k

dB

∑
l

αi, j
(
|ψA,i〉〈ψA,k| tr(|ψB, j〉〈ψB,l |)

)
(2.21)

=
dA

∑
i

dA

∑
k

αi, j

(
|ψA,i〉〈ψA,k|

dB

∑
j

dB

∑
l
〈ψB, j|ψB,l〉

)
. (2.22)

2.4 Entanglement
As already mentioned in Section 2.2, there are quantum mechanical systems for which
the state of the system as a whole is not completely determined by the states of the
individual subsystems. Take for example a system that consists of two subsystems. Let
us consider the following state of the combined system

|ψ+〉= 1√
2
(|00〉+ |11〉). (2.23)

There is no way to write |ψ+〉 as a tensor product of the states of subsystems A and B,
i.e.

|ψ+〉 6= |ψA〉⊗ |ψB〉. (2.24)

A state that has this property is called a non-separable or entangled state.
Now imagine that the two subsystems are spatially separated, i.e. one qubit is at

Alice’s location and the other qubit is at Bob’s location but the state of the system that
includes both qubits is still described by Equation (2.23). A consequence of the system
being in the state |ψ+〉 is that if the qubits are measured locally, i.e. if Alice measures
the system with the set of operators {|0〉〈0|⊗1, |1〉〈1|⊗1} and Bob uses the operators
{1⊗ |0〉〈0|, 1⊗ |1〉〈1|} , they will get the same measurement result with certainty,
given that they choose the same measurement basis. Although Alice and Bob measure
the same value, the outcome of their measurement will be random. To see this, we use
the knowledge of 2.3 and calculate the probabilities p0 and p1 using Formula (2.14) as
well as the corresponding post-measurement states |φ0〉 and |φ1〉 using Formula (2.15)
with e.g. Alice’s set of measurement operators {|0〉〈0|⊗1, |1〉〈1|⊗1}.

If Alice and Bob choose two different sets of measurement operators to measure
the state |ψ+〉 described by Equation (2.23), they will get the same result only with a
certain probability.

9



Let Alice and Bob be far away from each other and let them perform the measure-
ments on the state (2.23) within a small enough time window, so that their qubits cannot
communicate through any known physical interaction. By the theory of relativity in-
teraction cannot happen faster than the time it takes for a photon to travel in vacuum
from Alice to Bob. Assume furthermore that Alice and Bob repeat the experiment with
different measurement bases rotated to each other with different angles. One can show
that the results of the measurement performed in this way violate the so called Bell in-
equality [1] which gives a bound for the value of a special correlation function under the
assumption that the measurement results of Alice and Bob were predetermined by so
called “hidden variables” which can only influence each other through the way of phys-
ical interaction (i.e. communication). So either the theory of quantum mechanics has
to be considered wrong or the assumptions that were made to derive the Bell inequality
do not conform with reality. The first experiment that was able to verify the violation of
Bell’s inequality while excluding the possibility of communication between the subsys-
tems of Alice and Bob during the time of the measurement was performed in 1982 by
Aspect et. al. [20] with polarization-entangled photons. Since then, many experiments
with different physical realizations of entanglement have shown that Bell’s inequality
are violated in nature. Thus, nature behaves in a non-local and/or non-predetermined
manner.

The above described setting, where there are qubits at two different locations, is
called bipartite system. Not every state of the bipartite system can be used to violate
the Bell inequalities. For example any separable state, i.e. a state that can be written as
a tensor product of the states of the individual subsystems cannot be used to violate the
Bell inequality. Those states that maximally violate the Bell inequality are called Bell
or maximally entangled states and have the form

|ψ+〉= 1√
2
(|0+〉+ |1−〉), (2.25)

|ψ−〉= 1√
2
(|0+〉− |1−〉), (2.26)

|φ+〉= 1√
2
(|0−〉+ |0+〉), (2.27)

|φ−〉= 1√
2
(|0−〉−|1+〉). (2.28)

We denote the basis states of Alice’s subsystem as |0〉 and |1〉 and those of Bob |+〉
and |−〉 to make clear which qubits are at which location.

Despite of the violation of the Bell inequalities being a behaviour that cannot be ex-
plained by classical physics, entangled states cannot be used to communicate. This is
indicated by the description of the subsystems by the partial trace of the combined sys-
tem. The partial trace describes the absence of knowledge about the other subsystem.
Let the combined system be in the state |ψ+〉. Thus, the density operator is

ρ = |ψ+〉〈ψ+| (2.29)

=
1
2
(|00〉〈00|+ |00〉〈11|+ |11〉〈00|+ |11〉〈11|) (2.30)

=
1
2
(|0〉〈0|⊗ |0〉〈0|+ |0〉〈1|⊗ |0〉〈1|+ |1〉〈0|⊗ |1〉〈0|+ |1〉〈1|⊗ |1〉〈1|) .

(2.31)

If we now trace out the subsystem of e.g. Bob to get the state of the subsystem of

10



Alice, we get

ρA = trB(ρ) (2.32)

=
1
2

|0〉〈0| 〈0|0〉︸︷︷︸
1

+|0〉〈1| 〈0|1〉︸︷︷︸
0

+|1〉〈0| 〈1|0〉︸︷︷︸
0

+|1〉〈1| 〈1|1〉︸︷︷︸
1

 (2.33)

=
1
2
(|0〉〈0|+ |1〉〈1|) (2.34)

=
1
2
1. (2.35)

So the state ρA is a mixed state where the probability that the system is in state |0〉
is exactly 1

2 . No measurement on this state can reveal any information about Bob’s
subsystem.

11



Chapter 3

Entanglement Measures

3.1 Local Operations and Classical Communication
Since most applications of entanglement involve local operations and classical commu-
nication (LOCC) it may make sense to assume that those operations are freely available
when the question of whether one state is more entangled than the other is addressed.
For example one could ask whether the (pure) state |ψ1〉 can be turned into |ψ2〉 with
only LOCC. If it is possible, the state |ψ1〉 is considered to have the same or more
entanglement than |ψ2〉 since it is at least as useful as |ψ2〉 for any application.

In the present work, classical communication is usually not regarded as free and it
would thus be more appropriate to exclude the ability to communicate in the definition
of an entanglement measure. Nevertheless, we use the standard notion of entangle-
ment in the present work, so that the results of this work can be compared directly to
previously known results in the field of entanglement distillation research.

3.2 Entropy of Entanglement
For bipartite pure states |ψ〉 one often uses the so called entropy of entanglement de-
noted as E(|ψ〉) as a measure. It is defined as the Von Neumann entropy S(ρψ,A) (see
e.g. [18, p. 510]) of the density operator that describes one of the subsystems, e.g.
Alice’s:

ρψ,A := trB|ψ〉〈ψ|, (3.1)

so that

E(|ψ〉) := S(ρψ,A) =−ρψ,A log2 ρψ,A. (3.2)

To compute E, one first computes the vector of eigenvalues λ of the density matrix
ρψ,A and then uses

E(|ψ〉) = S(ρψ,A) = H(λ ) :=−
d

∑
i

λi log2 λi, (3.3)

where d is the dimension of the Hilbert space describing Alice’s subsystem. The en-
tropy of entanglement cannot be increased by LOCC as can be seen from the discussion
in Section 4.3.

12



3.3 Fidelity and the Fully Entangled Fraction
The term fidelity is used for the probability for a state described by the density operator
ρ to yield a pure state |ψref〉 when the corresponding system is measured with a set
of operators that project on orthogonal subspaces containing the operator |ψref〉〈ψref|.
According to Formula (2.17), this probability is

ϕ|ψref〉(ρ) := tr(|ψref〉〈ψref|ρ) = 〈ψref|ρ|ψref〉. (3.4)

In the present work, the symbol ϕ|ψref〉(ρ) is used to denote the fidelity of state ρ with
respect to the reference state |ψref〉. If the subscript of ϕ is omitted, the fidelity with
respect to the Bell state |ψ+〉 is meant.

The fully entangled fraction F(ρ) [5] is defined to be the maximal fidelity with
respect to a maximally entangled state that one can get if local unitary operations are
allowed to be performed before the (hypothetical) measurement. This entanglement
measure is known to be well suited for the distinction of separable states from en-
tangled states [21] and is very useful in the context of optimization of entanglement
distillation protocols as will become clear in Chapter 5. Moreover, the fully entangled
fraction is related to protocols that use a Bell state as a resource so that the fully en-
tangled fractions determines the best achievable error rate of the quantum algorithm.
Mathematically, the definition of the fully entangled fraction is

Definition 3.3.1. The following equation defines the fully entangled fraction F(·) of a
state described by the density operator ρ of a bipartite two-qubit system represented by
the four-dimensional Hilbert space HA⊗HB, where HA and HB are two-dimensional
Hilbert spaces.

F(ρ) = max
|φ〉:m.e.

〈φ |ρ|φ〉, (3.5)

where |φ〉 denotes any maximally entangled state.

For bipartite systems, Definition 3.3.1 can also be written in terms of unitary oper-
ations as follows

F(ρ) = max
UA,UB

〈φ+|(UA⊗UB)ρ(U
†
A⊗U†

B)|φ
+〉, (3.6)

where UA and UB denote arbitrary unitary operations on the Hilbert spaces HA and
HB respectively and |φ+〉 = 1√

2
(|0+〉+ |1−〉). This equivalence holds because in the

bipartite case, the maximally entangled states are the Bell states (Section 2.4), which
form a complete basis set and can be interconverted to each other by local unitary
operations without communication [5].

Also notice that if the system is in a pure state, i.e. ρ = |ψ〉〈ψ|, then the fully
entangled fraction is simply

F(ρ) = max
UA,UB

|〈φ+|(UA⊗UB)|ψ〉|2. (3.7)

In the following, we will derive some properties of the fully entangled fraction that
will be used in Chapter 4 in the context of the Schmidt projection method.

Lemma 3.3.1. Let ρ = ∑i ciρi be a linear combination of density matrices ρi with
ci ∈ [0,1]⊆ R, then:

F(ρ)≤∑
i

ciF(ρi), (3.8)

where F(ρ) is the fully entangled fraction (Definition 3.3.1).

13



Proof.

F(ρ) = max
|φ〉: m.e.

〈φ |(∑
i

ciρi)|φ〉 (3.9)

= max
|φ〉: m.e.

∑
i

ci〈φ |ρi|φ〉 (3.10)

≤∑
i

ci max
|φ〉: m.e.

〈φ |ρi|φ〉 (3.11)

The last equality holds because the coefficients ci are non-negative and since an in-
crease in the value of any sum over real numbers implies an increase in at least one
term over which the sum is taken.

Note that Theorem 1 in [22] gives a condition under which Equation 3.8 holds with
equality, given that the sum on the right hand side is a convex combination of pure
states.

Lemma 3.3.2. Let HA and HB be two-dimensional Hilbert spaces and let |ψ〉 be a
separable pure state of the combined system, i.e. ρ := |ψ〉〈ψ| with |ψ〉 := |ψA〉⊗ |ψB〉
for some states |ψA〉 ∈HA and |ψB〉 ∈HB. Then, the fully entangled fraction of the
state ψ of the combined system is always less than or equal to 0.5.

Proof. The pure states can be written in general as |ψA〉 := αA|0〉+βA|1〉 and |ψB〉 :=
αB|+〉+βB|−〉 for some complex coefficients αA,αB,βA,βB ∈C with |αA|2+ |βA|2 = 1
and |αB|2 + |βB|2 = 1.

If any unitary operation of the form UA⊗UB is applied on a tensor product state of
the form |ψA〉⊗ |ψB〉, the state of the combined system can still be written as a tensor
product:

(UA⊗UB)(|ψA〉⊗ |ψB〉) = (UA|ψA〉⊗UB|ψB〉) = (|ψ̃A〉⊗ |ψ̃B〉). (3.12)

with |ψ̃A〉 :=UA|ψA〉= α̃A|0〉+ β̃A|1〉 and |ψ̃B〉 :=UB|ψB〉= α̃B|+〉+ β̃B|−〉.
With the above definitions, the state of the combined system after application of

any local unitary operations is

|ψ̃A〉⊗ |ψ̃B〉= α̃Aα̃B|0+〉+ α̃Aβ̃B|0−〉+ β̃Aα̃B|1+〉+ β̃Aβ̃B|1−〉 (3.13)

.
Therefore we have

|〈φ+|(|ψ̃A〉⊗ |ψ̃B〉)|2 = |
(

1√
2
(〈0+|+ 〈1−|)

)
(|ψ̃A〉⊗ |ψ̃B〉)|2 (3.14)

=
1
2
|α̃Aα̃B + β̃Aβ̃B|2 (3.15)

≤ 1
2
(|α̃Aα̃B|2 + |β̃Aβ̃B|2) subadditivity

(3.16)

=
1
2
(
|α̃Aα̃B|2 +(1−|α̃A|2)(1−|α̃B|2)

)
(3.17)

=
1
2
(
2|α̃Aα̃B|2−|α̃A|2−|α̃B|2 +1

)
(3.18)

=
1
2

|α̃A|2︸ ︷︷ ︸
≥0

(|α̃B|2−1)︸ ︷︷ ︸
≤0

+ |α̃B|2︸ ︷︷ ︸
≥0

(|α̃A|2−1)︸ ︷︷ ︸
≤0

+1


︸ ︷︷ ︸

≤1

(3.19)

≤ 1
2
. (3.20)

14



Since in the above derivation we allow any unitary operation of the form UA⊗UB, the
fully entangled fraction has to fulfil

F [(|ψA〉⊗ |ψB〉)(〈ψA|⊗ 〈ψB|)]≤
1
2
. (3.21)

Lemma 3.3.3. Let HA and HB be two-dimensional Hilbert spaces and let ρ be a
separable mixed state of the combined system, i.e. ρ := ρA ⊗ ρB for some density
operators ρA on HA and ρB on HB. Then, the fully entangled fraction of ρ is always
less than or equal to 0.5.

Proof. By definition, the density matrices ρA and ρB can be written as

ρA :=
n

∑
i

pA,i|ψA,i〉〈ψA,i| and (3.22)

ρB :=
n

∑
i

pB,i|ψB,i〉〈ψB,i|, (3.23)

where each sum goes over an ensemble of n pure states |ψA,i〉 and |ψB,i〉 of the sys-
tems A and B respectively. For these ensembles, pA,i and pB,i denote the probabilities
with which the systems A and B are in state |ψA,i〉 and |ψB,i〉 respectively. With these
definitions, we have

F (ρ) := F (ρA⊗ρB) (3.24)

= F

((
n

∑
i

pA,i|ψA,i〉〈ψA,i|

)
⊗

(
n

∑
i

pB,i|ψB,i〉〈ψB,i|

))
(3.25)

= F

(
n

∑
i

n

∑
j

pA,i pB, j(|ψA,i〉⊗ |ψB, j〉)(〈ψA,i|⊗ 〈ψB, j|)

)
(3.26)

≤
n

∑
i

n

∑
j

pA,i pB, jF ((|ψA,i〉⊗ |ψB, j〉)(〈ψA,i|⊗ 〈ψB, j|)) by Lemma3.3.1

(3.27)

≤
n

∑
i

n

∑
j

pA,i pB, j
1
2
=

1
2

n

∑
i

pA,i

n

∑
j

pB, j =
1
2

by Lemma3.3.2.

(3.28)

15



Chapter 4

Entanglement Distillation
Protocols

Given a certain number n of copies of a particular non-separable state, the goal of En-
tanglement Distillation is to obtain a number m of (close to) perfectly entangled states
as high as possible using only local operations and, if needed, classical communica-
tion. For states that are not perfectly entangled, the best achievable fraction m/n has
to be smaller than 1. This is true by definition: any state that can be converted to
a maximally entangled state by LOCC is by itself maximally entangled (See Section
3.1). Furthermore, the optimal fraction m/n is non-increasing under LOCC since if it
could be increased it would not be optimal. Thus, the optimal fraction m/n serves as
an entanglement measure, which is usually called the distillable entanglement ED.

In the context of optimization (see Chapter 5) and in the case when finite n is
considered, it may also be useful to ask the modified question of how much of the
initial entanglement can be concentrated in a certain number m of qubits (where m < n)
instead of requiring the m output states to be perfectly entangled. This is the scenario
we will consider most in this work.

Table C.1 summarizes the properties of some previously known entanglement dis-
tillation protocols.

4.1 Single Pair Purification
Protocols exist, that act on a single pair of qubits distributed between Alice and Bob.
Examples for such protocols are the Procrustean method, entanglement swapping and
local filtering (see Table C.1). These protocols rely on the fact that with a certain mea-
surement procedure one can project the state of the two-qubit system onto a maximally
entangled state. This projection belongs to a particular measurement outcome that
only occurs with a certain probability. Therefore Alice and Bob have to “post-select”
the maximally entangled states, which means that they discard their qubits if the mea-
surement outcomes differ from the one that corresponds to the maximally entangled
state. Such a protocol can be executed by local operations and classical communica-
tion (LOCC). Since every two states that can be interconverted by LOCC to each other
with certainty are considered to be equally entangled, it follows that whenever the prob-
ability psucc with which a maximally entangled state is obtained by such a single pair
purification protocol is smaller than one, the input state has to be less than maximally
entangled. This suggests the usefulness of the best achievable psucc as an entangle-
ment measure. This (non-additive) entanglement measure is called the entanglement

16



Alice

Bob

...
...

...
...

{
{

{

{

n

ancilla

ancilla

...
...

...
...

{

{

m

m

input

ninput

output

output

Figure 4.1: General scheme of an entanglement protocol without communication. Entangled Pairs of qubits
are connected by a wavy line. The initial entanglement of the n input qubit pairs shared by Alice and Bob is
concentrated into m pairs of stronger entanglement by the unitary operations UA and UB. The ancilla qubits
can be used to perform irreversible operations such as measurements on the n input qubits as part of these
unitary operations.

of single pair purification [23] usually denoted as Es.

4.2 Protocols without communication
Figure 4.1 shows the general scheme of an entanglement protocol without communi-
cation. The entanglement protocol is completely determined by the two unitary op-
erations UA and UB. In order to be able to perform irreversible operations such as
measurements on the n qubits, a number of ancilla qubits can be added.

Among the protocols shown in Table C.1, there are two protocols that work without
communication: the Schmidt projection method by Bennet et al [12] for pure states and
the No-communication Random Permutation Protocol by Ambainis and Yang [8] for
mixed states. The reader may wonder why such protocols can exist at all. In the
case of the Schmidt projection method this is possible because Alice and Bob can
gain some information about their state by an incomplete measurement on the n input
qubits and use this information to concentrate the entanglement into a number m < n
qubits. In the Random Permutation Protocol, Alice and Bob make use of shared source
of random numbers (public coin) and some initially shared perfectly entangled states.
The improvement of the fidelity with the Random Permutation Protocol is very limited.

4.3 General Limitations and Optimality
The protocols shown in Table C.1 give lower bounds on the distillable entanglement of
the states they act on. There also exist several upper bounds on distillable entanglement.
First of all since entanglement protocols are a special case of general entanglement

17



transformations, all limits known to general entanglement transformations apply also
for entanglement protocols. As shown in [24], a pure state |ψ〉 can be transformed into
another pure state |φ〉 if and only if

λψ ≺ λφ , (4.1)

where λψ and λφ are the vectors of eigenvalues of ρψ,A = trB|ψ〉〈ψ| and ρφ ,A =

trB|φ〉〈φ |. The relation ≺ means that λψ is majorized by λφ , i.e. ∑i(λ
↓
ψ)i ≤ ∑i(λ

↓
φ
)i,

where λ
↓
ψ (λ ↓

φ
) have the same elements as λψ (λφ ) but are sorted decreasingly. From

the above necessary and sufficient condition for entanglement conversion under LOCC,
it is easy to derive that the entropy of entanglement cannot be increased under LOCC.
The majorization condition is also discussed in [18, pp. 573–581], where they also pose
an exercise to prove a similar condition for entanglement transformation of pure states
without the ability to communicate, namely

Theorem 4.3.1. (Exercise 12.22 from [18, p. 579]) A pure state |ψ〉 can be transformed
into another pure state |φ〉 without communication if and only if

λψ
∼= λφ ⊗x, (4.2)

where x is a vector of non-negative elements summing up to 1, λψ and λφ are the
vectors of eigenvalues of ρψ,A = trB|ψ〉〈ψ| and ρφ ,A = trB|φ〉〈φ |. The relation∼= means
that the vectors λψ and λφ ⊗x have the same elements but possibly with different order.

The proof of Theorem 4.3.1 is postponed to Appendix A. While 4.3.1 is relatively
easy to proof for pure states since we can use the Schmidt decomposition to find the
relationship between λψ and λφ , it becomes more complicated when one or both of the
input and output states of the transformation are mixed states. The Scenario involving
mixed states is investigated by the numerical optimization described in Chapter 5.

In [13] it is shown that for an arbitrary pure state |ψ〉 with entropy of entanglement
Einit, the optimal probability of distilling more than nEinit maximally entangled states
goes to zero as n goes to infinity. On the other hand, the Schmidt projection method
(see Table C.1 and Section 4.4) produces a number of m = nEinit maximally entangled
states as n approaches infinity. Thus the Schmidt projection method is asymptotically
optimal. Furthermore, in [13] it is also shown that m < nEinit is a sufficient condition
to distill m maximally entangled states out of n→ ∞ copies of any pure state.

An overview of this and other previously known limits to the existence of entan-
glement protocols is given in Table C.2. All of these limits apply to entanglement
protocols without communication. Those limits that are also valid for protocols with
communication are indicated by an asterisk (*) in the column denoted as “comm” in
Table C.2.

4.4 A Note On The Schmidt Projection Method For Two
Copies

The Schmidt projection method by Bennet et al [12] is an entanglement distillation
method for pure states that works without communication. The procedure is as follows:
first, an incomplete measurement is performed to project the system into a subspace
where the state is maximally entangled if the measurement outcome k is larger than 0
and smaller than n. Then the maximally entangled state is transferred into a standard
form such as m copies of a particular Bell state i.e. (|φ+〉)⊗m.

As pointed out in [12], this procedure only becomes efficient for a large number
of copies n. Nevertheless, there is a non-zero probability of obtaining a maximally

18



entangled state even for n = 2 copies. In the context of the optimization technique
described in Chapter 5, the question arose whether it is possible to concentrate enough
entanglement into the subsystem of the first pair of qubits, so that the fully entangled
fraction of the mixed state that results from application of the protocol is higher than
for one of two copies of a given input state. I.e.:

F(trA2 trB2 [E (|ψinput〉⊗ |ψinput〉)])
?
> F(|ψinput〉), (4.3)

where E denotes the Schmidt projection method that takes a pure state as input.
For 2 copies, the answer to this question is negative:

Theorem 4.4.1. The Schmidt projection method, if applied on two copies of a pure
initial state, does not lead to a state with higher fully entangled fraction than the initial
state if no post-selection is allowed.

Note that this result does not mean the Schmidt projection method is not useful
at all for entanglement distillation with two copies of an imperfectly entangled state.
There is a non-zero probability of obtaining a measurement result from that one knows
that the post-measurement state is a perfectly entangled pure state. It just means that it
is necessary to select those outputs of the protocol that have been successful and throw
away those that were not successful (post-selection).

Theorem 4.4.1, which is proven in Appendix B, leads to the question whether it is
possible at all to increase the fully entangled fraction, if only two copies of a pure state
are given as input to any entanglement distillation protocol without communication and
without post-selection. This question turns out to be hard to answer analytically, but it
is addressed by numerical optimization in Chapter 5.

Interestingly, it is possible to increase the fully entangled fraction of the first pair
of qubits if n = 3 copies of |ψ〉 are given. It can be done by the following procedure:

Protocol 4.4.1. (Schmidt projection method for 3 copies of a pure state)

1. Apply the Schmidt projection method on the first two copies.

2. If the method was not successful in obtaining a maximally entangled state, flip
the third copy of |ψ〉 with the first pair of qubits (conditional swap). If necessary,
apply the local unitary transformations on the first qubit in Alice’s and Bob’s lo-
cation such that the fidelity of the first pair of qubits w.r.t. a maximally entangled
state equals the fully entangled fraction of the initial state.

Claim 4.4.1. Given 3 copies of a pure input state |ψinput〉= c|0+〉+ s|1−〉, c,s ∈R 1

that has a fully entangled fraction F(|ψinput〉)= 1
2 (c+s)2, the above described protocol

produces a mixed state with a fidelity of 1
2 (1− 2c2s2)(c+ s)2 + 2c2s2 > F(|ψinput〉) if

the initial state |ψinput〉 was entangled, i.e. c > 0,s > 0.

Proof. Since the Schmidt projection method applied on two copies of |ψinput〉 produces
a maximally entangled state with probability 2c2s2 (see [12]), and in the other case the
protocol swaps the output of the Schmidt projection method with the untouched third
copy of the initial state, the resulting mixed state is

ρout = 2c2s2|φ+〉〈φ+|+(1−2c2s2)|ψinput〉〈ψinput|. (4.4)

1By the Schmidt decomposition every pure state of two qubits can be brought into this form if the com-
putational basis is chosen appropriately (see e.g. [18, p. 109]).

19



The fidelity with respect to the Bell state |φ+〉 of the resulting state is:

〈φ+|ρout|φ+〉= 2c2s2 +(1−2c2s2)F(|ψinput〉〈ψinput|) (4.5)

= 2c2s2 +(1−2c2s2)(c+ s)2 (4.6)

This quantity is larger than F(|ψinput〉) if c,s > 0 and c 6= s.

Note that Protocol 4.4.1 can also be used to distill entanglement from the following
mixed state:

ρinput =
k

∑
i=1

pi (|ψi〉〈ψi|)⊗3 , (4.7)

where |ψi〉 = ci|0+〉+ si|1−〉 with c2
i + s2

i = 1 and 0 < ci < si for i = 1, · · · ,k. And
pi > 0, i = 1, · · · ,k with ∑

k
i=1 pi = 1. This can be easily seen since by Lemma 3.3.1 the

fully entangled fraction is less than the weighted sum of the fully entangled fractions
of |ψi〉, i = 1, · · ·k with weights pi. Furthermore, the Schmidt projection protocol E
acts linearly on ρinput such that

E (ρinput) =
k

∑
i=1

piE
(
(|ψi〉〈ψi|)⊗3

)
. (4.8)

Let the output of the protocol be only the first pair of qubits, i.e. tracing out the second
and third pair,

ρoutput = trA2,3,B2,3 [E (ρinput)] (4.9)

Thus, the fidelity of the first pair of qubits of the output state ρoutput will be

〈φ+|ρoutput|φ+〉=
k

∑
i=1

piϕi, (4.10)

where ϕi is the fidelity one obtains by applying Protocol 4.4.1 on 3 copies of the pure
input state |ψi〉 that is by Claim 4.4.1 larger than the fully entangled fraction of |ψi〉. It
follows that the fully entangled fraction of ρoutput must be larger than the fully entangled
fraction of ρinput.

20



Chapter 5

Numerical Optimization

The task of finding deterministic protocols for entanglement distillation of an arbitrary
bipartite state without communication (see Section 4.2) is addressed by the following
optimization problem:

Problem 5.0.1. (Optimization Problem)

Given the input state ρinput ∈H22n , find UA ∈Cn×n and UB ∈Cn×n which
minimize

f (UA,UB) = 1−〈φ+| trSA trSB [(UA⊗UB)ρinput(U
†

A ⊗U †
B )]|φ+〉, (5.1)

where trSA (trSB ) denotes the partial trace over the subsystem of Alice (Bob)
without her (his) first Qubit,

subject to the constraint of UA,UB ∈ C2n×2n
being unitary matrices, i.e.

U †
A UA = UAU †

A = U †
B UB = UBU †

B = 1. (5.2)

The Optimization Problem 5.0.1 can be converted into an unconstrained problem
by an appropriate parameterization of the unitary matrices UA and UB (see Section
5.1). A difficulty with this approach is, that parameterizations of unitary matrices are
always non-linear and cannot be written as polynomials with a finite number of co-
efficients. Therefore, this approach requires an efficient algorithm to perform uncon-
strained non-linear optimization (non-linear programming). Several algorithms exist
to perform local non-linear optimization, e.g. Newton’s method (see e.g. [25]). In
contrast, no algorithm is known, that deterministically performs global optimization
of a general non-linear continuous objective function of several variables. In order to
circumvent this difficulty, several heuristics can be employed such as starting the Local
optimization with a number of randomly distributed initial search points. A class of
heuristics that has been quite successful in many applications is the so called evolu-
tionary algorithms. Due to the stochastic nature of evolutionary algorithms, they are
well suited for objective functions with a large number of parameters. This work inves-
tigates the use of CMA-ES (Covariance Matrix Adaptation - Evolution Strategy) [9],
which is a modern evolutionary algorithm for continuous objective functions (Section
5.2). As test cases serve the problems of finding protocols to distill entanglement from
3 or 2 copies of a pure input state in Section 5.3 and 5.4 respectively and from 3 copies
of a mixed input state in Section 5.5.

As an alternative approach one could try to directly solve the Optimization Prob-
lem 5.0.1. The real valued objective function f (UA,UB) is a positive polynomial of

21



fourth order with complex coefficients and complex-valued variables, which are the
elements of the unitary matrices in its argument. The constraints are equalities on posi-
tive polynomials of second order (also with complex variables and coefficients). Those
polynomials can be converted into polynomials of eighth and forth order respectively in
the real valued elements of the real and imaginary parts of the unitary matrices by sub-
stituting the complex numbers by z = a+ ib, for a,b ∈ R and analytically performing
the matrix-vector multiplications. Lasserre showed in [26] that polynomial optimiza-
tion problems can be approximated by a sequence of convex linear matrix inequality
(LMI) problems. Furthermore, Waki et. al. [27] proposed how to handle equality con-
straints and provided a practical implementation of their algorithm [28]. The treatment
of Optimization Problem 5.0.1 by means of polynomial optimization is not further in-
vestigated in the present work but proposed as subject for future research.

5.1 Parameterization of Unitary Matrices
The goal of this section is to find a parameterization

P : Rk→U(N); x ∈ Rk 7→ U = P(x) ∈U(N), (5.3)

where U(N) denotes the group of N-dimensional unitary matrices i.e.

U(N) := {U ∈ CN×N | U†U = UU† = 1}. (5.4)

It is known from group theory [29], that there exists the exponential map

exp : u(N)→U(N); X ∈ u(N) 7→ U := eX ∈U(N), (5.5)

u(N) denotes the corresponding N-dimensional algebra u(N) = {X ∈ CN×N | X† =
−X} and eX is the matrix exponential. This exponential map can also be written as

U = eiH, (5.6)

where H = H† is a hermitean matrix.
Therefore, a simple parameterization of unitary operations is obtained by parame-

terizing hermitean matrices H. This can be done by mapping 1
2 N(N +1) real parame-

ters to the elements of a symmetric matrix S and 1
2 N(N−1) parameters to the elements

of a skew-symmetric matrix K such that H = S+ iK. In total this parameterization has
k = N2 parameters.

The above described parameterization has a major drawback: the matrix expo-
nential is expensive to compute. Fortunately, there is a divide-and-conquer algorithm
found by C. Jarlskog [30, 29] that computes the exponential map (5.5) using O(N2)
elementary operations.

Since the computing time an optimization algorithm needs to converge to the opti-
mum strongly depends on the number of parameters k and the number of dimensions
N grows exponentially with the number of Qubits, it is sometimes useful to restrict the
optimization to a subset of all possible solutions. In the case of unitary matrices one
can restrict the search to the subset of orthogonal matrices that only have N(N − 1)
degrees of freedom in addition to one parameter (the determinant) that can be either
plus or minus one. A recursive parameterization of orthogonal matrices of determinant
+1 or -1 that is efficient to compute has been found by R. Raffenetti and K. Ruedenberg
[31]. The parameterization of orthogonal matrices has the advantage, that the deriva-
tives of the matrix elements with respect to the parameters can be computed and it can
be efficiently inverted [32]. The disadvantage is, that the sign of the determinant is an
additional binary parameter.

22



5.2 Black-Box Optimization With CMA-ES
In the following, the CMA-ES optimization algorithm [9] is introduced, that has been
used to obtain the results presented in Sections 5.3, 5.4 and 5.5. A detailed discussion of
CMA-ES is given in [33]. The algorithm was designed to solve a general multivariate
single-objective optimization problem with the goal that the user of the algorithm a-
priori needs very little knowledge about the objective function. This kind of treatment
is called “black-box” optimization (BBO).

The origin of CMA-ES is the so called evolution strategy that was developed in
the early 1970’s by Rechenberg and Schwefel in their Ph.D. theses [34, 35]. As for the
evolution strategy, CMA-ES maintains a set of strategy parameters that describe how
to sample a number λ of guesses of the solution to the optimization problem, i.e. the
vector that minimizes the objective function. Following the idea and terminology of
biological evolution theory, these guesses are called “children”, “offspring” or simply
“population”. For each of these guesses, the objective function is evaluated to get a
so called fitness value. Using the ranking based on the objective function value, the µ

best candidate solutions (“parents”) are selected. To conclude one iteration (also called
“generation”), the strategy parameters are updated by machine learning based on the
properties of the selected parent solutions as well as information about the previous
iterations. This last step of the iteration is called self-adaptation. The entire procedure
is repeated many times so that a larger and larger part of the space of possible solution
vectors is explored.

In CMA-ES, the λ offspring x(g)k of generation g are sampled from a multivariate
normal distribution: [33]

x(g)k ∼N
(

m(g),(σ (g))2C(g)
)

for k = 1, · · · ,λ . (5.7)

The strategy parameters are the mean vector m(g), the covariance matrix C(g) and a
scalar σ (g) that scales the covariance matrix and is thus called “step length”. The mean
vector is updated by a weighted average over the µ selected parents. The default setting
for the number of parents is µ = 1

2 λ . It is reasoned in [33] that this is a good choice
if the weights are chosen to be linearly decreasing from the parent with the best fitness
value to the one among the µ selected parents with the worst fitness.

In order to store information about previous iterations that can be used to update the
covariance matrix C and step length σ , there are two additional strategy parameters, the
so called cumulated evolution paths p(g)

c and p(g)
σ . These evolution paths are weighted

sums over the difference between the mean vectors m(g) and m(g+1) of two consecutive
iterations (referred to as “steps”). The weights are chosen to be exponentially fading, so
that the most recent step gains the highest weight. The evolution paths can be calculated
by update rules given in [33]. In the update of p(g+1)

c , the effect of the global step size
σ (g) on the evolution path is undone, so that this vector only reflects the direction from
the mean vector m of the previous iteration to the one of the present iteration. The
principal components of the covariance matrix are then adapted to p(g+1)

c . This update
is usually combined with the so called rank-µ update [36] that takes into account the
differences between the strategy mean vector m(g) and each of the µ best offspring of
generation g separately. Using the rank-µ update, more information about the every
single individual is incorporated into the update of the covariance matrix so that larger
population sizes will lead to faster learning of the covariance matrix.

On the other hand, p(g+1)
σ is calculated by transforming the steps with C−1/2 in or-

der to negate the effect of the covariance matrix. The magnitude of pσ is compared to
an analytically calculated expectation value under the assumption that the µ best off-
spring are distributed around the strategy mean vector m(g) by the multivariate normal

23



distribution N (m(g),1), where 1 denotes the identity matrix. If the actual evolution
path p(g+1)

σ is longer (shorter) than the expected length, this means that the step length
σ (g) was too short (long) and thus will be increased (decreased) for the next iteration.

As explained in [9], the adaptation of the covariance matrix improves the proba-
bility for the algorithm to find the global optimum compared to traditional evolution
strategies. Namely, the global search property largely depends on the step size, which
is adjusted by the self-adaptation part of CMA-ES. A large number of offspring λ

should also make the search more global since it increases the density of points that are
evaluated in the search space.

5.3 Results for 3 copies of a pure initial state with 2 an-
cilla qubits per party

We want to find entanglement distillation protocols with input given by three copies of
the pure state

|ψinput〉=
√

0.1|0+〉+
√

0.9|1−〉 (5.8)

together with two ancilla qubits on Alice’s and Bob’s location. Thus, the input state
that determines Optimization Problem 5.0.1 is

ρinput = (|ψinput〉〈ψinput|)⊗3⊗|00〉〈00|⊗ |++〉〈++| (5.9)

One copy of the input state |ψinput〉 has a fidelity of 0.8. For this problem, we know
that we can achieve a fidelity of 0.836 by Protocol 4.4.1, which corresponds to an
objective function value of 0.164 provided that Alice and Bob each have two ancilla
qubits to do the Schmidt projection measurement. So this problem can serve as a
test to evaluate the suitability of the optimization algorithm to find new entanglement
distillation protocols.

5.3.1 Optimization over a Single Orthogonal Matrix
In order to reduce the dimensionality of the optimization problem, the number of pa-
rameters have been reduced by only optimizing over orthogonal matrices (see Section
5.1) and by setting UB

!
= UA (“symmetric distillation”). Note that Protocol 4.4.1 leads

to an orthogonal matrix and is a case of symmetric distillation.
Under these restrictions, the operation of one party on the three local copies and on

two ancilla qubits, is represented by an orthogonal matrix of dimension d = 23+2 = 32.
The corresponding parameterization has 1

2 d(d−1)+1 = 497 parameters. This number
includes one additional parameter, which has been chosen to be the first element of the
parameter vector. The sign of this parameter determines the sign of the determinant,
whereas the magnitude of the parameter has no effect on the objective function value.

The optimization has been started multiple times, each time with a different initial
search point and a different seed of the random number generator.

Interestingly, there were several runs of the optimization that converged to an ob-
jective function value of 0.164. This objective function value corresponds to an end
state with a fidelity of 0.836 that equals the fully entangled fraction of the output state
that is produced by Protocol 4.4.1. Since the fidelity of the output state is higher than
the initial fully entangled fraction of 0.8, we conclude that it is possible to find entan-
glement distillation protocols by the presented optimization method. The optimization
runs that resulted in a protocol that achieves a higher fidelity than the initial fully en-
tangled fraction will be called successful optimization runs.

24



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c

fi
de

lit
y

 

 
indicates c = sqrt(0.1)
initial fidelity
result of 1st successful run
result of 2nd successful run
result of 3rd successful run
Schmidt projection

Figure 5.1: The fidelity of the state one obtains by applying different protocols on three copies of the input
state |ψ〉 = c|0+〉+

√
1− c2|1−〉 for different values of c. For comparison, the fidelity of the input state is

indicated by the green line with triangles. It can be seen, that all protocols lead to a state of the same fidelity.
Three of those protocols have been obtained by numerical optimization using the CMA-ES optimization
algorithm. They are referred to as first, second and third successful run. By the term ’Schmidt projection’ in
the legend, Protocol 4.4.1 is meant. The vertical dashed line indicates c =

√
0.1 that corresponds to the input

state for which these protocols have been optimized in the three successful optimization runs.

The initial search point of the first and second successful run has been chosen by
sampling from a Gaussian distribution around the zero vector with a standard deviation
of 0.0814. By the parameterization of orthogonal matrices, the zero-vector corresponds
to the identity matrix. For the third successful run, the initial search point has been
chosen to be exatly the zero vector. Each of these runs have been started with an
initial step width of σ = 0.01 that turned out to lead to faster convergence compared
with larger step widths. The optimal initial step width is hard to find due to the high
computational cost of each optimization run.

Figure 5.1 shows the fidelity that one gets if the protocols found by the three opti-
mization runs are applied on initial states of the form c|0+〉+

√
1− c2|1−〉. for differ-

ent values of c. Keep in mind that the optimization has been performed for an initial
sate with c = 0.1 (5.8). While the unitary matrices that make up these protocols differ,
the final states obtained by these protocols have the same fidelity for every possible
input state that equals to the fidelity achieved by Protocol 4.4.1. It can be seen from
Figure 5.2, that the density matrices of the end states of the protocols found by the first
and third successful run are essentially (up to small deviations) the same as for the end
state of Protocol 4.4.1.

While these runs converged to the same objective function value, the determined
orthogonal matrices differ between each run. This is illustrated by Figure 5.3.

Furthermore, all of these optimization runs show a slightly different convergence
behaviour. It can be seen from Figure 5.4, that the convergence of all optimization runs
has stalled near to the initial fitness of 0.2 before the optimization converged to the final
fitness value of 0.164 and reached the stopping criteria. The first and the second run
needed about 10000 function evaluations until the optimization came close to the final
objective function value, whereas in the third run, the fitness value has stalled over a
longer period of about 0.9×105 function evaluations.

Only those optimization runs were successful, that have been started with an initial

25



0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
(a)

c

de
ns

ity
 m

at
ri

x 
en

tr
y

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
(b)

c

de
ns

ity
 m

at
ri

x 
en

tr
y

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8
(c)

c

de
ns

ity
 m

at
ri

x 
en

tr
y

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1
(d)

c

de
ns

ity
 m

at
ri

x 
en

tr
y

Figure 5.2: Plots of the elements of the density matrices of the output state obtained by applying four
different protocols on three copies of the input state |ψ〉 = c|0+〉+

√
1− c2|1−〉 for different values of c.

Only those elements of the 4× 4 real density matrix that considerably differ from zero are shown. Panel
(a): Protocol 4.4.1, Panel (b), (c) and (d): first second and third successful run of the CMA-ES optimization
algorithm. Solid blue line: ρ1,1, green circles with red dots: ρ4,1 and ρ1,4, dash-dotted cyan line: ρ4,4,
magenta squares with brown line in Panel (c): ρ2,2, ρ3,2, ρ2,3 and ρ3,3. This figure reveals, that only the
protocol of the second successful optimization run leads to a different density matrix than the others.

parameter vector that is close to the zero vector. For those optimization runs for which
the elements of the parameter vector have been chosen to be uniformly distributed in
the range [−π,+π], the optimization converged to an objective function value of 0.203.
This value corresponds to a fidelity of 0.797, which is above the initial fidelity of 0.8. In
some cases the optimization simply converged to a fitness value 0.2 that corresponds
exactly to the input fidelity and also could be a local minimum. Table C.3 gives an
overview over all optimization runs that have been performed.

A possible explanation for it to be beneficial to choose the initial parameters close
to zero may be that due to the angular nature of the parameterization of orthogonal
matrices, parameters close to zero or a multiple of π will lead to sparse matrices. As
can be seen from Figure 5.3, the optimal orthogonal matrices are semi-sparse in the
sense that in each column there is a particular element that has a much larger magnitude
(from 2 to 105 times larger) than the other non-zero elements of the column.

5.3.2 Unrestricted Optimization over 2 Unitary Matrices
In this section, we present the results of the optimization over two different unitary
matrices UA and UB, i.e. without restriction to orthogonal matrices. To do the opti-
mization, the parameterization of unitary matrices presented in Section 5.1 was used.
Since each unitary matrix has N2 degrees of freedom, where N = 2n is the dimension
of the Hilbert space of n = 5 qubits, we have 2048 parameters in total.

Table C.4 gives an overview of all optimization runs that have been performed for

26



j

i

(a)

 

 

10 20 30

10

20

30

j

i

(b)

 

 

10 20 30

10

20

30

j

i

(c)

 

 

10 20 30

10

20

30

j

i

(d)

 

 

10 20 30

10

20

30

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

Figure 5.3: Visualization of four different orthogonal 32×32 matrices that all lead to a state with the same
increased fully entangled fraction if simultaneously applied by Alice and Bob on their part of 3 copies of
an initially entangled pure state together with two local ancilla qubits per party. The color of each pixel
indicates the value of the corresponding matrix entry (U)i, j . (a) is determined by hand according to Protocol
4.4.1. (b), (c) and (d) are the results of the first, second and third successful run of the optimization with
CMA-ES for different initial search points and seeds of the random number generator.

27



0 1 2 3

x 105

0

0.2

0.4

f=0.164

(a)

# fun. eval.

fit
ne

ss
 v

al
ue

 f

0 1 2 3

x 105

10−20

10−10

100
(b)

# fun. eval.

f−
m

in
(f

)

0 1 2 3

x 105

0

2

4
(d)

# fun. eval.

ax
is

 r
at

io

0 1 2 3

x 105

10−10

10−5

100
(c)

# fun. eval.

si
gm

a

Figure 5.4: Convergence behaviour of three runs of the CMA-ES algorithm when used to find an entangle-
ment distillation protocol without communication for 3 copies of a pure state. The optimization was limited
to orthogonal matrices and the operations performed by Alice and Bob have been constrained to be the same.
The dimensionality of the search space is 497. The fully entangled fraction of the given input state is 0.8,
which corresponds to a fitness value of f = 0.2. The best fidelity achieved was 0.836, which corresponds to
a fitness value of f = 0.164. The blue solid line corresponds to the first successful run, the cyan dashed line
to the second and the magenta dashed-dotted line to the third run. The abscissae correspond to the number
of objective function evaluations that have been done by the black-box optimization algorithm to reach the
corresponding state. Panel (a): the best objective function value found after each iteration. Panel (b): the
difference to the final objective function value. Panel (c): the parameter σ of the CMA-ES algorithm, by
which the standard deviations of the sampling distribution are scaled (step size). Panel (d): the ratio between
the longest and shortest principle axis length of the covariance matrix of the sampling distribution.

28



the unrestricted optimization. As for the symmetric orthogonal case (Section 5.3.1),
it depends on the starting point whether the optimization converges to a protocol that
is successful in producing a state below the initial fidelity. But unlike the orthogonal
case, the initial parameters do not have to be close to zero. It can be seen from Figure
5.5, that the behaviour of the self-adaptation of σ and the covariance matrix is very
similar for two runs with different starting point, even if one run is successful and the
other fails. The best protocol that has been found within the limited number of function
evaluations for the general unitary case, produces a state with fidelity 0.83272 from the
input state (run 8.2 in Table C.4). This value is close to 0.836, which is the fidelity
achieved by Protocol 4.4.1. Figure 5.6 shows that the unitary matrices of the protocol
found by the optimization are sparse and from Figure 5.7 it can be seen that the found
protocol does not perform as good as Protocol 4.4.1 especially for input states that are
close to maximally entangled (i.e. c≈ 1√

2
in Equation (5.8)) this contrasts with the case

where the optimization was restricted to symmetric distillation by orthogonal matrices
(c.f. Figure 5.1). Because the number of function evaluations needed to reach the
best found objective function value (“needed # f.e.” in Table C.4) is close to the total
number of function evaluations that have been performed, we expect that the solution
can be improved by running the optimization algorithm for a longer time.

5.4 Results for 2 copies of a pure initial state
For the case of only two copies of a pure input state we have shown in Section 4.4, that
the Schmidt projection cannot be used to increase the fully entangled fraction without
post-selection. Thus, it is an interesting question whether it is possible to find another
entanglement distillation protocol that can perform this task. However, none of the tried
optimization runs performed on two copies of the state 0.1|0+〉+ 0.9|1−〉 resulted in
a protocol that leads to a state with higher fidelity than the fully entangled 0.2 of the
initial state (see Table C.5). This is a sign that possibly there is no non-interactive
protocol that increases the fully entangled fraction of two copies of a pure input state.

5.5 Results for 3 copies of a Werner state
It has been tried to use the same optimization method as used for 3 copies of a pure
state (Section 5.3) to distill entanglement from 3 copies of a mixed state. The state
chosen for this purpose was the Werner state:

ρinput =

(
1− 3

4
p
)
|φ+〉〈φ+|+ 1

4
p
(
|φ−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ−〉〈ψ−|

)
. (5.10)

For the optimization p in (5.10) has been fixed to a value of p = 0.1. This state has
an initial fidelity w.r.t. |φ+〉 of 0.925, which corresponds to a fitness value of 0.075.
We know from [8] that the maximal fidelity we can hope to produce from any number
of copies of the Werner state ρinput (5.10) is upper bounded by 1− p

2 = 1−0.05 = 0.95
(see Table C.2). It can be seen from Table C.6, that none of the performed optimization
runs was successful. The problem is, that the computational complexity of the objective
function evaluation is higher than for the case of a pure input state: In the former case
one only has to perform matrix vector multiplication, which has complexity O(N2)
where N is the dimension of the Hilbert space. On the other hand, in order to apply the
unitary operations on the mixed input state ρinput one has to calculate UρinputU†, which
involves two matrix multiplications. For that, the number of elementary operations is

29



0 2 4 6 8

x 105

0.15

0.2

0.25

f=0.167287587884049

(a)

# fun. eval.

fit
ne

ss
 v

al
ue

 f

0 2 4 6 8

x 105

10−8

10−6

10−4

10−2

100
(b)

# fun. eval.

f−
m

in
(f

)

0 2 4 6 8

x 105

1

1.2

1.4

1.6

1.8
(d)

# fun. eval.

ax
is

 r
at

io

0 2 4 6 8

x 105

10−3

10−2

10−1
(c)

# fun. eval.

si
gm

a

Figure 5.5: Convergence behaviour of three runs of the CMA-ES algorithm when used to find an entan-
glement distillation protocol without communication for 3 copies of a pure state. The search space is 2048-
dimensional, which corresponds to the general case of optimization over 2 unitary matrices. The fully
entangled fraction of the given input state is 0.8, which corresponds to a fitness value of f = 0.2. Each of
the runs shown in this figure has a different starting point chosen uniformly between −π and +π . The green
line corresponds to the first successful run (id 8.2 in Table C.4), the blue line to an unsuccessful run (id
15.1 in Table C.4). The abscissae correspond to the number of objective function evaluations that have been
performed by the black-box optimization algorithm to reach the corresponding state. Panel (a): coloured
lines show the best objective function value found after each iteration (black lines show the fitness of the
worst offspring in the corresponding iteration). Panel (b): the difference to the final objective function value.
Panel (c): the parameter σ of the CMA-ES algorithm, by which the standard deviations of the sampling
distribution are scaled (step size). Panel (d): the ratio between the longest and shortest principle axis length
of the covariance matrix of the sampling distribution.

30



j

i

(a) magnitude of (U
A
)
i,j

 

 

10 20 30

10

20

30

j

i

(b) argument of (U
A
)
i,j

 

 

10 20 30

10

20

30

(c) magnitude of (U
B
)
i,j

j

i

 

 

10 20 30

10

20

30

(d) argument of (U
B
)
i,j

j

i

 

 

10 20 30

10

20

30

0.2

0.4

0.6

0.8

−2

0

2

0.2

0.4

0.6

0.8

−2

0

2

Figure 5.6: Visualization of the 32×32 unitary matrices UA and UB found by optimization run 8.2 shown
in Table C.4. If UA (UB) is applied by Alice (Bob) on her (his) part of 3 copies of the pure state (5.8)
together with two local ancilla qubits per party, a fidelity of 0.83272 results. Panel (a): the magnitude of
the complex entries of UA. Panel (b): the argument arg

(
(UA)i, j

)
= arctan

(
Im
(
(UA)i, j

)
/Re

(
(UA)i, j

))
.

Panel (c): the magnitude of the complex entries of UB. Panel (d): the argument arg
(
(UB)i, j

)
=

arctan
(

Im
(
(UB)i, j

)
/Re

(
(UB)i, j

))
.

31



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

c

fi
de

lit
y

 

 
initial fidelity
indicates c = sqrt(0.1)
Schmidt projection
initial fidelity
result of run 8.2 (general case)

Figure 5.7: The fidelity of the state one obtains by applying different protocols on three copies of the input
state |ψ〉 = c|0+〉+

√
1− c2|1−〉 for different values of c compared to the initial fidelity indicated by the

green line with triangles. The performance of the best protocol obtained by numerical optimization over
general unitary matrices with limited number of function evaluations (optimization run 8.2 in Table C.4) is
indicated by the blue solid line with circles. By the term ’Schmidt projection’ in the legend, Protocol 4.4.1 is
meant. The vertical dashed line indicates c =

√
0.1 corresponding to the input state for which optimization

run 8.2 has been performed.

on the order of O(N3) with the naive approach 1.

1There exist algorithms for matrix-matrix multiplication with lower complexity such as Strassen’s algo-
rithm [37] for which the number of scalar multiplications is on the order of O(Nlog2 7).

32



Chapter 6

Conclusions

After summarizing the properties of previously known entanglement distillation pro-
tocols and limits to the distillability with and without communication, we have in-
vestigated the use of the Schmidt projection method without communication for the
cases where only 2 or 3 copies of an entangled state are given. It is possible to in-
crease the fully entangled fraction with the Schmidt projection without post-selection
if and only if more than two copies of an entangled pure state are given. We derived
a non-interactive entanglement distillation protocol for mixed states from the Schmidt
projection method for three copies of a pure input state. Furthermore, we demonstrated
the possibility to find an equivalent protocol to the Schmidt projection method for 3
copies by numerical optimization. For 2 copies of a pure input state the numerical op-
timization was unsuccessful, indicating that no protocol for 2 copies of an entangled
pure state that increases the fully entangled fraction exists. Finally, we investigated the
performance of the optimization algorithm if the input state is a mixed state.

33



Acknowledgements

Many thanks go to my advisor Dejan Dukaric for the great assistance he gave me during
the time I was working on the present project, for the patience he had in answering
my numerous questions and giving the present work the right direction. My special
gratitude belongs to Prof. Stefan Wolf for the opportunity to do the present thesis in his
group and for the well understandable and motivating lectures he held at ETH Zürich.
His lectures have sparked my interest in quantum information and computation as well
as general information science.

34



Appendix A

Proof of Theorem 4.3.1

We are going to proof Theorem 4.3.1:

|ψ〉 can be non-interactively transformed to |φ〉 ⇐⇒ λψ
∼= λφ ⊗x, (A.1)

where the elements of vector x are non-negative and sum up to 1.

Proof. “⇐=”: Assume that the right hand side of Equivalence (A.1) is true for some
pure states |ψ〉 and |φ〉. Let |ψE〉 be some pure state with ρψE ,B = trB|ψE〉〈ψE | having
eigenvalues given by the vector x and let |ψR〉 := |φ〉 ⊗ |ψE〉. Furthermore, let the
density operator ρψR,A = trB|ψR〉〈ψR| of Alice’s subsystem have eigenvalues given by
the vector λρ ⊗x.

The Schmidt decomposition (see e.g. [18, p. 109]) of any bipartite state |ϕ〉 is

|ϕ〉=
d

∑
i=1

√
ci|ϕA,i〉|ϕB,i〉, (A.2)

for orthogonal sets of basis vectors {|ϕA,i〉 |i = 1, · · ·d} and {|ϕB,i〉 |i = 1, · · ·d}, where
d is the dimension of the Hilbert space describing Alice’s and Bob’s subsystem (which
for simplicity and without loss of generality are assumed to be of the same dimension-
ality) and c ∈ Rd is the vector of squared Schmidt coefficients with ∑

d
i ci = 1. The

corresponding density matrix is

|ϕ〉〈ϕ|=
d

∑
i=1

d

∑
j=1

√
cic j|ϕA,i〉〈ϕA,i|⊗ |ϕB,i〉〈ϕB,i|. (A.3)

Thus, the partial trace over Bob’s subsystem is

ρϕ,A = trB|ϕ〉〈ϕ|=
d

∑
i=1

ci|ϕA,i〉〈ϕA,i|. (A.4)

So the squared Schmidt coefficients are exactly the eigenvalues of ρϕ,A. By the as-
sumption that for the state |ψR〉 the density matrix of Alice’s subsystem has the same
eigenvalues as for the state |ψ〉, it follows that the Schmidt coefficients of |ψR〉 and
|ψ〉 are the same. So to convert |ψ〉 into |ψR〉 Alice and Bob just have to apply lo-
cal unitary operations UA and UB that transform the orthogonal sets of basis vectors
{|ϕA,i〉 |i = 1, · · ·d} and {|ϕB,i〉 |i = 1, · · ·d} from the Schmidt decomposition of |ψ〉
into the ones of the Schmidt decomposition of |ψR〉. Finally, |φ〉 can be obtained by
the partial trace over the subsystem of |ψE〉 in |ψR〉= |φ〉⊗ |ψE〉.

35



“=⇒”: Let us assume that the pure state |ψ〉 has been converted into the pure state
|φ〉 without communication. It follows that

|ψR〉= |φ〉⊗ |ψE〉= (UA⊗UB)|ψ〉. (A.5)

From the derivation above, we know that the vectors λψ and λψR are equal to the
vector of squared Schmidt coefficients of |ψ〉 and |ψR〉 respectively. It is easy to see
that the local unitary transformation UA⊗UB does not change the values of the Schmidt
coefficients of |ψ〉. As above, we define x to be the vector of eigenvalues of ρψE ,A =
trB|ψE〉ψE |. Since

trB|ψR〉〈ψR|= trB [|φ〉〈φ |⊗ |ψE〉〈ψE |] = ρφ ,A⊗ρψE ,A, (A.6)

it follows that λψ
∼= λφ ⊗x

36



Appendix B

Proof of Theorem 4.4.1

In the following, the mathematical statement and proof of Theorem 4.4.1 is given.

Definition B.0.1. Let the Schmidt-Projection measurement be defined by the measure-
ment operators P0 := P0,A⊗P0,B, P1 := P1,A⊗P1,B, P2 := P2,A⊗P2,B where

P0,A := |00〉〈00|, P0,B := |++〉〈++|, (B.1)
P1,A := |01〉〈01|+ |10〉〈10|, P1,B := |+−〉〈+−|+ |−+〉〈−+|, (B.2)
P2,A := |11〉〈11|, P2,B := |−−〉〈−−|. (B.3)

The subscripts of the projection operators denote the measurement outcomes.

Theorem B.0.1. Mathematical satement of Theorem 4.4.1:
Let |ψinput〉 := c|0+〉+ s|1−〉 ∈HA ⊗HB with c,s ∈ R, c2 + s2 = 1, where |0〉

and |1〉 are orthogonal states in the two-dimensional Hilbert space HA while |+〉 and
|−〉 are orthogonal states in the two-dimensional Hilbert space HB. Based on that, let
|ψcopy〉 := (|ψinput〉)⊗2 ∈HA1⊗HB1⊗HA2⊗HB2 , where HA1⊗HB1 and HA2⊗HB2
denote the Hilbert spaces of the first and second copy respectively. Furthermore let ρpm
be the state of the system after a Schmidt-Projection measurement (Definition B.0.1).
Then

F(|ψinput〉〈ψinput|)> max
UA,UB

F(trA2 [trB2 [(UA⊗UB)ρpm(U
†

A ⊗U †
B )]]), (B.4)

where F(·) denotes the fully entangled fraction (Definition 3.3.1), UA denotes an
arbitrary unitary operator on the subspace HA1 ⊗HA2 whereas UB denotes an arbi-
trary unitary operator on HB1 ⊗HB2 and trA2 [·] and trB2 [·] denote the partial trace
over the subspaces HA2 and HB2 .

Note that the “standardization process” as described in [12] is not probabilistic in
this special case of only two given copies of the initial state, since if the measurement
outcome of the Schmidt-Projection measurement (Definition B.0.1) is 1, then the cor-
responding state can be transformed into a maximally entangled state with local unitary
operations that are applied before tracing out one of the entangled pairs of qubits.

Proof. Since

|ψcopy〉 := (|ψinput〉)⊗2 = c2|00++〉+ s2|11−−〉+ cs(|01+−〉+ |10−+〉)
(B.5)

= c2|00++〉+ s2|11−−〉+
√

2cs|ψ1〉 (B.6)

37



with |ψ1〉 := 1√
2
(|01+−〉+ |10−+〉) the state ρpm after application of the Schmidt-

Projection measurement (Definition B.0.1) is

ρpm = c4|00++〉〈00++|+ s4|11−−〉〈11−−|+2c2s2|ψ1〉〈ψ1| (B.7)

= c4|00〉〈00|⊗ |++〉〈++| (B.8)

+ s4|11〉〈11|⊗ |−−〉〈−−| (B.9)

+2c2s2|ψ1〉〈ψ1|. (B.10)

Therefore, the state after application of the unitary operator UA⊗UB is

ρ̃pm : = (UA⊗UB)ρpm(U
†

A ⊗U †
B ) (B.11)

= c4UA|00〉〈00|U †
A ⊗UB|++〉〈++|U †

B (B.12)

+ s4UA|11〉〈11|U †
A ⊗UB|−−〉〈−−|U †

B (B.13)

+2c2s2(UA⊗UB)|ψ1〉〈ψ1|(U †
A ⊗U †

B ). (B.14)

= c4|ϕA
0 〉〈ϕA

0 |⊗ |ϕB
0 〉〈ϕB

0 | (B.15)

+ s4|ϕA
2 〉〈ϕA

2 |⊗ |ϕB
2 〉〈ϕB

2 | (B.16)

+2c2s2|ψ̃1〉〈ψ̃1|. (B.17)

with |ϕA
0 〉 :=UA|00〉, |ϕB

0 〉 :=UB|++〉, |ϕA
2 〉 :=UA|11〉, |ϕB

2 〉 :=UB|−−〉 and |ψ̃1〉 :=
(UA⊗UB)|ψ1〉.

Now the partial trace (linear operator) over the second copy of the distributed pair
of qubits is

ρoutput := trA2 [trB2 [ρ̃pm]] (B.18)

= c4(trA2 [|ϕ
A
0 〉〈ϕA

0 |])⊗ (trB2 [|ϕ
B
0 〉〈ϕB

0 |]) (B.19)

+ s4(trA2 [|ϕ
A
2 〉〈ϕA

2 |])⊗ (trB2 [|ϕ
B
2 〉〈ϕB

2 |]) (B.20)

+2c2s2 trA2 [trB2 [|ψ̃1〉〈ψ̃1|]] (B.21)

= c4
ρ0,A⊗ρ0,B + s4

ρ2,A⊗ρ2,B +2c2s2
ρ1, (B.22)

with ρ0,A := trA2 [|ϕA
0 〉〈ϕA

0 |], ρ0,B := trB2 [|ϕB
0 〉〈ϕB

0 |], ρ2,A := trA2 [|ϕA
2 〉〈ϕA

2 |], ρ2,B :=
trB2 [|ϕB

2 〉〈ϕB
2 |] and ρ1 := trA2 [trB2 [|ψ̃1〉〈ψ̃1|]].

Because of Lemma 3.3.1, Lemma 3.3.3 and because F(·) ≤ 1 by definition, the
following inequalities hold

F(ρoutput)≤ c4F(ρ0,A⊗ρ0,B) (B.23)

+ s4F(ρ2,A⊗ρ2,B) (B.24)

+2c2s2F(ρ1) by Lemma 3.3.1 (B.25)

≤ (c4 + s4)
1
2
+2c2s2F(ρ1) by Lemma 3.3.3 (B.26)

≤ (c4 + s4)
1
2
+2c2s2 (B.27)

=
1
2
(c4 + s4 +2c2s2)+ c2s2 (B.28)

=
1
2
+ c2s2 (B.29)

The inequality has to hold even if we maximize over the unitary operators UA and
UB since the right-hand-side of this inequality is constant, whereas F(ρoutput) allows

38



an arbitrary local unitary operation UA⊗UB to be performed before taking the partial
trace over one of the copies.

But the initial entanglement was

F(|ψinput〉〈ψinput|) =
∣∣〈φ+|(c|0+〉+ s|1−〉)

∣∣2 (B.30)

=

∣∣∣∣ 1√
2
(c+ s)

∣∣∣∣2 (B.31)

=
1
2
(c2 + s2 +2∗ cs) (B.32)

=
1
2
+ cs. (B.33)

Thus, since c,s ∈ [0,1]

F(ρoutput)≤ F(|ψinput〉〈ψinput|) (B.34)

with equality if and only if c = 0 or s = 0 (separable input state).

39



Appendix C

Tables

C.1 Entanglement Distillation Protocols
Table C.1: Some previously known entanglement distillation protocols. Refer to the cited articles in the column “reference” for the description and proof of correctness of these protocols. The
protocols take n states of the form given in the column “input state” and produce m output states of fidelity ϕout w.r.t. a specific maximally entangled state if they succeed (with probability psucc). The
protocols listed above the thin line are protocols that are applied on pure states, whereas those below that line are protocols for mixed states. Whether the protocol includes classical communication
from Alice to Bob in one or both directions is shown in the column denoted as “comm.”. In the column named “prev. knowledge”, the variables that have to be known in advance, i.e. before the
execution of the protocol, are listed. An approximate-equality symbol “≈” in the column “m” indicates that the corresponding value is realized in the limit as n→∞. The four Bell states are denoted
as |φi j〉, where i, j ∈ {0,1}. Note that the order of the enumeration of the Bell states causes no loss of generality, since Alice and Bob can permute the Bell states by local unitary operations[5].

40



n m input state name of the protocol comm. prev. knowledge success prob. psucc output fidelity ϕout reference

1 1 |ψ〉= c|0+〉+ s|1−〉 Procrustean (Filtering) 1-way c,s 2min(c2,s2) 1 [12, 38,
39]

1 1 |ψ〉 = ψAA ⊗ψAB, where ψAA =
c|00〉+ s|11〉 is the sate of a pair of
qubits completely in Alice’s possession,
whereas ψAB = c|0+〉+ s|1−〉 belongs
to a pair that is distributed to Alice and
Bob.

Entanglement Swapping 1-way none 2c2s2 1 with probability psucc or
else
ϕ00 =

1
2 (1−2c2 +2c4)−1,

ϕ01 = 1−ϕ00

[23]

� 1 ≈ nEinit |ψ〉⊗n = (c|0+〉+ s|1−〉)⊗n with
entropy of entanglement Einit > 0

Schmidt Projection no none 1 as n→ ∞ 1 [12, 39,
40]

1 1 ϕ|φ+〉〈φ+|+(1−ϕ)|0+〉〈0+| Filtering 2-way none ϕε +(1−ϕ)ε2 ϕε/psucc [41, 42]

2 1 ρpair = ρW,1 ⊗ ρW,2, where ρW,1 and
ρW,2 are Werner states i.e. ρW,k =
1
3 (4ϕk − 1)|φ+〉〈φ+|+ 1

3 (1−ϕk)1AB

with ϕ1,ϕ2 >
1
2

BBPSSW (for recursive
and nested schemes)

2-way none 1
9 (5−2ϕ2 +ϕ1(8ϕ2−2)) 1

9 (1−ϕ2 +ϕ1(10ϕ2 −
1))/psucc

[4, 5, 43,
42]

2 1 ρpair = ρ1⊗ρ2, where ρ1 and ρ2 are Bell
diagonal i.e. ρk = ∑i j,k ϕi j,k |φi j,k〉〈φi j,k |
with ϕ00,1,ϕ00,2 >

1
2

DEJMPS (for recursive
and nested schemes)

2-way none (ϕ00,1 +ϕ11,1)(ϕ00,2 +
ϕ11,2) + (ϕ01,1 +
ϕ10,1)(ϕ01,2 +ϕ10,2)

ϕ00,out = (ϕ00,1ϕ00,2 +ϕ11,1ϕ11,2)/psucc

ϕ01,out = (ϕ01,1ϕ01,2 +ϕ10,1ϕ10,2)/psucc

ϕ10,out = (ϕ00,1ϕ11,2 +ϕ11,1ϕ00,2)/psucc

ϕ11,out = (ϕ01,1ϕ10,2 +ϕ10,1ϕ01,2)/psucc

[6, 44,
43, 42]

≥ 2 < n any ρ = ρinput, where ρinput ∈H22n with
ϕ(ρinput) = 〈φ+|ρ|φ+〉 ≥ 1− ε

Random Hashing 1-way none ≥ 1− ε 1−2m−n/(1− ε) [7, 8, 45]

≥ 2 < n any ρ = ρinput ⊗ (|φ+〉〈φ+|)⊗k ,
where ρinput ∈H22n with ϕ(ρinput) =
〈φ+|ρ|φ+〉 ≥ 1− ε and n and m chosen
such that nk/m and m/k are integers.

Random Permutation 2-way none 1 1− 2m−2k
2m

2n
2n−1 ε [7, 8, 45]

≥ 2 < n same input as above but with a shared
source of random numbers (public coin)

No-communication
Random Permutation

no none 1 1− 3
4

2n− 2
3

2n−1 ε [8, 45]

� 1 ≈ n(1−S(ρ)) ρ⊗n, where ρ is Bell diagonal i.e.
ρ = ∑i, j ϕi j |φi j〉〈φi j | with von Neumann
entropy S(ρ)< 1 combined with a num-
ber n(S(ρ)+ δ ), δ ≥ 0 of maximally
entangled states

Breeding 1-way ϕi j 1 as n→ ∞ 1 [4, 5, 42]

� 1 ≈ n(1−S(ρ)) ρ⊗n, where ρ is Bell diagonal i.e.
ρ = ∑i, j ϕi j |φi j〉〈φi j | with von Neumann
entropy S(ρ)< 1

Hashing 1-way ϕi j 1 as n→ ∞ 1 [5, 46,
42]

41



C.2 Limits to Distillability
Table C.2: Some previously known limits to the existence of entanglement distillation protocols for particular input states. Refer to the cited articles for the proofs of these limits (given in the
column “refence”). m denotes the number of output states which have higher fidelity ϕout than each of the n given input states. A “0” for “max. m” means that no distillation protocol fulfilling this
particular requirements exists. The limits given in the columns “max. m” and “max. ϕout” only apply if the requirements specified in the other columns are met. An asterisk (*) indicates that the
corresponding quantity does not matter for the limit, i.e. the limitation applies for any value of this quantity. The limits listed above the thin line are limits that apply to protocols that work on pure
states, whereas those below that line are limitations on the existence of protocols for mixed states. Whether the protocol is allowed to include classical communication from Alice to Bob in one or
both directions is shown in the column denoted as “comm.”. In the column named “prev. knowledge”, the variables that are given in advance, i.e. before the execution of the protocol, are listed.
The column “required psucc” specifies what the desired success probability is. Note that a value of 1 means that the protocol has to be deterministic in the sense that it always has to succeed. A
value of one in column “required ϕout” means that the limitation only applies to protocols that generate maximally entangled output pairs.

42



n m input state name of the corresponding noise
model (if any)

comm. prev. knowledge required psucc required ϕout max. m max. ϕout reference

* * any pure state with entropy of entangle-
ment E(|ψ〉)≥ k

Entanglement Model * only k 1 * 0 [45]

� 1 * any pure state |ψ〉 with entropy of
entanglement Einit

* * > 0 1 nEinit for n→ ∞ [13]

* * any ρ = ρinput⊗ (|φ+〉〈φ+|)⊗k , where
ρinput ∈H22n with ϕinit = ϕ(ρinput) ≥
1− ε and k < m

Fidelity Model * only ε and k 1 * 1− 2m−2k
2m

2n
2n−1 ε [7, 45]

* * same input as above but with a shared
source of random numbers (public coin)

Fidelity Model no only ε and k 1 * 1− 3
4

22n

22n−1
ε [8, 45]

* * ρ = 1

2n
(

n
r

) ∑
v:deg(v)=r

|φv〉〈φv|, where

v ∈ {0,1,∗}n, deg(v) := |{i : vi 6= ∗}|
and |φv〉 :=

⊗n−1
j=0 |φ j〉 with

|φ j〉 :=


|0+〉 if v j = 0
|1−〉 ifv j = 1
|φ+〉 if v j = ∗

Bounded Measurement Model no * 1 * 0 [8, 45]

* * ρ = 1

3n
(

n
r

) ∑
v:deg(v)=r

Pv|(φ+〉〈φ+|)⊗nP†
v ,

v := (x0,x1, . . . ,xn−1,z0,z1, . . . ,zn−1),
deg(v) := |{i : xi 6= 0∨ zi 6= 0}|,
Pv := Xx0 Zz0 ⊗ . . .⊗Xxn−1 Zzn−1

Bounded Corruption Model no * 1 * 1− r
2n [45]

* * ρ = (ρW )⊗n, where ρp is a Werner state:
ρW = (1 − 3p

4 )|φ+〉〈φ+| +
p
4 (|φ

−〉〈φ−|+ |ψ+〉〈ψ+|+ |ψ〉〈ψ−|)

Depolarization Model no * 1 * 1− p
2 [8, 45]

* * ρ(p) = (Ωα )
⊗n, where Ωα =

1+α

2 |φ
+〉〈φ+|+ 1−α

2 |φ
−〉〈φ−|

Weakly Entangled Mixed States no * 1 * 0 [14]

2 * ρ(p) = pρ0 +(1− p)ρ1, p ∈ [0,1],
where ρ(p) ∈ S and S is a twirlable
family of bipartite mixed states, e.g
the familiy of all Werner states (see
reference).

* * 1 * 0 [15]

43



C.3 Optimization Runs
In the following, tables summarizing the properties of the performed numerical optimizations are presented.

Table C.3: Listing of the performed optimization runs for the case of symmetric distillation with an orthogonal matrix for 3 copies of a pure input state together with 2 ancilla qubits per party
(Section 5.3.1). The dimensionality of the search space was 497. The “run id” is an arbitrary identifier of the run. In the column “initial parameters”, either the distribution with which the initial
parameters have been sampled is given or else the parameters were exactly the same as in a previous optimization run (“same as . . . ”). “resumed from . . . ” means that the corresponding run has
been continued from of a former run. The term “param.” in the column denoted as “det.”, means that the determinant was set by the sign of an additional parameter. For an explanation of the
algorithm specific parameters σ and λ , refer to Section 5.2. The value given in the column “total # f. e.” is the total number of function evaluations, whereas the value given in “needed # f. e.” is
the number of function evaluations needed to reach the final fitness value given in the column “final fitness” up to an accuracy of 5 decimals. The given fitness values can be converted directly to
fidelities by subtracting the fitness from 1. The fidelity of the input state was 0.8 for all runs. Thus, only those runs with fitness < 0.2 were successful in finding an entanglement distillation protocol.
The time the CPU used to perform the optimization is given in the column “runtime CPU”. The optimizations have been performed on a cluster which automatically distributes the jobs to specific
nodes. Those nodes have different CPUs. The speed of the CPU is indicated by the so called “CPU factor”. The corresponding CPU models are: 6.5: AMD Opteron 250, 7.5: AMD Opteron 8380,
8.0: AMD Opteron 2220

run id initial parameters det. init. σ λ total # f. e. needed # f. e. initial fitness final fitness runtime CPU CPU factor

1 N (0,(0.0814)2) param. 0.01 22 233289 79729 0.45097 0.16400 n/a n/a
2 N (0,(0.0814)2) param. 0.01 22 269699 87539 0.48775 0.16400 n/a n/a
z all zero param. 0.01 22 299223 146191 0.20000 0.16400 n/a n/a
3 U ([−π,+π]) param. 2π/

√
12 22 89167 28205 0.45196 0.32802 n/a n/a

4 U ([−π,+π]) param. 0.01 22 2442287 249767 0.48753 0.20300 n/a n/a
5 same as 4 param. 0.01 22 42571 38831 0.48753 0.20333 n/a n/a
6 same as 4 param. 0.01 22 28601 28183 0.48753 0.20434 39min 6.5

6.1 resumed from 6 param. - 22 300015 258171 - 0.20300 4h 06min 7.5
7 same as 4 param. 0.01 22 300015 287013 0.48753 0.20300 4h 27min 7.5
8 same as 4 param. 0.01 22 300015 286947 0.48753 0.20300 5h 19min 7.5

10 U ([−π,+π]) +1 0.01 22 300015 239053 0.44144 0.20300 6h 52min 6.5
11 same as 10 +1 0.01 22 300015 260503 0.44144 0.20300 6h 49min 6.5
12 same as 10 -1 0.01 22 300015 223081 0.44144 0.20300 7h 13min 6.5

table continued on next page

44



run id initial parameters det. init. σ λ total # f. e. needed # f. e. initial fitness final fitness runtime CPU CPU factor

13 same as 10 -1 0.01 22 300015 231947 0.44144 0.20300 6h 48min 6.5
15 U ([−π,+π]) +1 0.01 22 300015 220221 0.41733 0.20300 7h 02min 6.5
16 U ([−π,+π]) +1 0.01 22 300015 235027 0.46305 0.20300 6h 49min 6.5
17 U ([−π,+π]) -1 0.01 22 300015 254783 0.43582 0.20000 7h 20min 6.5
18 U ([−π,+π]) param. 0.01 22 300015 251021 0.44511 0.20300 5h 31min 8.0

18.1 resumed from 18 param. - 22 600007 251021 - 0.20300 5h 45min 8.0
19 U ([−π,+π]) param. 0.01 22 6403 6007 0.50830 0.20735 9min 6.5

19.1 resumed from 19 param. - 22 1000011 257709 - 0.20000 18h 19min 8.0
20 U ([−π,+π]) param. 0.01 22 300015 256807 0.46339 0.20300 6h 59min 6.5

45



Table C.4: Listing of the performed optimization runs for the case of general entanglement distillation for 3 copies of a pure input state together with 2 ancilla qubits per party (Section 5.3.2). The
dimensionality of the search space was 2048. The “run id” is an arbitrary identifier of the run. In column “initial parameters”, either the distribution with which the initial parameters have been
sampled is given or else the parameters were exactly the same as in a previous optimization run (“same as . . . ”) or the corresponding run is a continuation of a former run (“resumed from . . . ”).
For an explanation of the algorithm specific parameters σ and λ , refer to Section 5.2. The value given in the column “total # f. e.” is the total number of function evaluations, whereas the value
given in “needed # f. e.” is the number of function evaluations needed to reach the final fitness value given in the column “final fitness” up to an accuracy of 5 decimals. The given fitness values
can be converted directly to fidelities by subtracting the fitness from 1. The fidelity of the input state was 0.8 for all runs. Thus, only those runs with fitness < 0.2 were successful in finding an
entanglement distillation protocol within the limited number of function evaluations. The time the CPU used to perform the optimization is given in the column “runtime CPU”. The optimizations
have been performed on a cluster which automatically distributes the jobs to specific nodes. Those nodes have different CPUs. The speed of the CPU is indicated by the so called “CPU factor”. The
corresponding CPU models are: 6.5: AMD Opteron 250, 7.5: AMD Opteron 8380, 8.0: AMD Opteron 2220

run id initial parameters init. σ λ total # f. e. needed # f. e. initial fitness final fitness runtime CPU CPU factor

1 U ([−π,π]) 0.01 26 44773 44461 0.73277 0.17946 11h 33min 6.5
2 same as 1 0.01 26 100023 99867 0.73277 0.17532 17h 56min 6.5
3 same as 1 0.01 26 95083 92587 0.73277 0.17578 n/a n/a
8 same as 1 0.01 26 100023 100023 0.73277 0.17511 8h 08min 8.0

8.1 resumed from 8 - 26 300015 291490 - 0.16842 20h 53min 6.5
8.2 resumed from 8.1 - 26 600003 593867 - 0.16728 23h 57min 8.0
9 same as 1 0.01 26 100023 99815 0.73277 0.17534 10h 14min 6.5

9.1 resumed from 9 - 26 300015 297181 - 0.16825 20h 39min 6.5
15 U ([−π,π]) 0.01 26 200019 196919 0.71485 0.20524 16h 53min 8.0

15.1 resumed from 15 - 26 600003 591033 - 0.20296 32h 20min 8.0
16 U ([−π,π]) 0.01 26 200019 199161 0.71485 0.20520 16h 40min 8.0

16.1 resumed from 16 - 26 600003 590487 - 0.20036 32h 45min 8.0
17 U ([−π,π]) 0.01 26 200019 195833 0.67071 0.17284 16h 05min 8.0

46



Table C.5: Listing of the performed optimization runs for the case of entanglement distillation for 2 copies of a pure input state together with 2 ancilla qubits per party (Section 5.4). The “run id”
is an arbitrary identifier of the run. In the column “initial parameters”, either the distribution with which the initial parameters have been sampled is given or else the parameters were exactly the
same as in a previous optimization run (“same as . . . ”) or the corresponding run has been continued from a former run (“resumed from . . . ”). The dimensionality of the search space depends on
the restrictions that have been applied. If the value in the column “sym.” is true, then the unitary matrices UA and UB were restricted to be the same. If the column “orth.” contains a true, then UA
and UB were restricted to be orthogonal matrices. In the case of orthogonal matrices, the sign of the determinant is either set by a parameter which is indicated by the term “param” in the column
denoted as “det.”. Otherwise, the column “det.” contains the value to which the determinant was set. For an explanation of the algorithm specific parameters σ and λ , refer to Section 5.2. The value
given in the column “total # f. e.” is the total number of function evaluations, whereas the value given in “needed # f. e.” is the number of function evaluations needed to reach the final fitness value
given in the column “final fitness” up to an accuracy of 5 decimals. The given fitness values can be converted directly to fidelities by subtracting the fitness from 1. The fidelity of the input state was
0.8 for all runs. Thus, only those runs with fitness < 0.2 were successful in finding an entanglement distillation protocol within the limited number of function evaluations. The time the CPU used
to perform the optimization is given in “runtime CPU”. The optimizations have been performed on a cluster which automatically distributes the jobs to specific nodes. Those nodes have different
CPUs. The speed of the CPU is indicated by the so called “CPU factor”. The corresponding CPU models are: 6.5: AMD Opteron 250, 7.5: AMD Opteron 8380, 8.0: AMD Opteron 2220

run id initial param. sym. orth. det. init. σ λ total # f. e. needed # f. e. initial fitness final fitness runtime CPU CPU factor

sr1 U ([−π,π]) true true 1 0.1 18 226063 51913 0.50584 0.20000 0h 25min 8.0
sr2 U ([−π,π]) true true -1 0.1 18 164665 23779 0.50472 0.20000 0h 19min 8.0
sr3 all zero true true -1 0.1 18 41113 0 0.20000 0.20000 0h 05min 7.5
sr4 all zero true true 1 0.1 18 41419 0 0.20000 0.20000 0h 05min 8.0
r1 all zero false true param. 0.1 20 125601 0 0.20000 0.20000 0h 19min 7.5
r2 all zero false true param. 0.1 20 232441 0 0.20000 0.20000 0h 38min 7.5
r3 U ([−π,π]) false true 1 0.1 20 748661 13421 0.55897 0.20000 1h 02min 8.0
r4 U ([−π,π]) false true 1 0.1 20 583841 4978 0.51957 0.23000 1h 35min 8.0
g1 U ([−π,π]) false false - 0.1 22 300015 283845 0.77006 0.20001 1h 40min 8.0

g1.2 resumed from g1 false false - - 22 1000011 15750 - 0.20000 4h 18min 8.0
g2 U ([−π,π]) false false - 0.1 22 300015 197935 0.77387 0.20000 1h 36min 7.5

g2.2 resumed from g2 false false - - 22 567909 197935 - 0.20000 1h 51min 8.0

47



Table C.6: Listing of the performed optimization runs for the case of entanglement distillation for 3 copies of a Werner state (5.10) together with 2 ancilla qubits per party (Section 5.5). The “run
id” is an arbitrary identifier of the run. In the column “initial parameters”, either the distribution with which the initial parameters have been sampled is given or else the parameters were exactly
the same as in a previous optimization run (“same as . . . ”) or the corresponding run is a continuation of a former run (“resumed from . . . ”). The dimensionality of the search space depends on the
restrictions that have been applied. If the value in the column “sym.” is true, then the unitary matrices UA and UB were restricted to be the same. If the column “orth.” contains a true, then UA
and UB were restricted to be orthogonal matrices. In the case of orthogonal matrices, the sign of the determinant is either set by a parameter which is indicated by the term “param” in the column
denoted as “det.”. Otherwise, the column “det.” contains the value to which the determinant was set. For an explanation of the algorithm specific parameters σ and λ , refer to Section 5.2. The value
given in the column “total # f. e.” is the total number of function evaluations, whereas the value given in “needed # f. e.” is the number of function evaluations needed to reach the final fitness value
given in the column “final fitness” up to an accuracy of 5 decimals. The given fitness values can be converted directly to fidelities by subtracting the fitness from 1. The fidelity of the input state was
0.925 for all runs. Thus, only those runs with fitness smaller than 0.075 were successful in finding an entanglement distillation protocol within the limited number of function evaluations. The time
the CPU used to perform the optimization is given in “runtime CPU”. The optimizations have been performed on a cluster which automatically distributes the jobs to specific nodes. Those nodes
have different CPUs. The speed of the CPU is indicated by the so called “CPU factor”. The corresponding CPU models are: 6.5: AMD Opteron 250, 7.5: AMD Opteron 8380, 8.0: AMD Opteron
2220

run id initial param. sym. orth. det. init. σ λ total # f. e. needed # f. e. initial fitness final fitness runtime CPU CPU factor

sr1 U ([−π,π]) true true param. 0.01 22 91983 91631 0.50373 0.12013 34h 20min 6.5
sr2 same as 1 true true param. 0.01 22 91983 91125 0.50373 0.12009 34h 05min 6.5
sr3 all zero true true +1 0.01 22 100013 1 0.07500 0.07500 18h 34min 8.0
sr4 all zero true true +1 0.01 22 100013 1 0.07500 0.07500 18h 20min 8.0
sr5 all zero true true -1 0.01 22 100013 1 0.11888 0.11888 18h 34min 8.0
sr6 all zero true true -1 0.01 22 100013 1 0.11888 0.11888 18h 28min 8.0
s1 U ([−π,π]) true false - 0.01 24 12577 12565 0.71130 0.37129 28h 33min 8.0

s1.1 resumed from s1 true false - - 24 47665 46199 - 0.17446 34h 48min 8.0
s2 U ([−π,π]) true false - 0.01 24 51721 51516 0.67241 0.13511 34h 38min 8.0
g1 U ([−π,π]) false false - 0.01 26 8009 7984 0.74997 0.53858 24h 20min 6.5
g2 same as g1 false false - 0.01 26 8009 7984 0.74997 0.54449 18h 44min 8.0

48



Appendix D

Source Code

Here we provide the MATLAB source code to the numerical optimization which has
been used to obtain the results stated in Chapter 5.

The central routine which evaluates the objective function, is in the file “FITNESS.M”
(Section D.9). The CMA-ES optimization algorithm is implemented in “CMAES.M” a
file which has been published by Nico Hansen [47] (not redistributed in this report).
In order to initialize all the parameters of the algorithm and the function which com-
putes the objective function value one can use the function implemented in the file
“TEST_CONTOPT.M” (Section D.41).

D.1 ANGLE_CROSSOVER.M

% angle_crossover.m: 10.01.2011, Yves Salathe
function x = angle_crossover(parents, options, nvars, FitnessFcn,

unused,thisPopulation)
% crossover function which can be used in a genetic algortihm
% The genome, which is used as an input for the fitness function is
% encoded as follows: every pair of bits encodes an angle
% 00: 0 degrees
% 01: 90 degrees
% 10: 180 degrees
% 11: 270 degrees
% The crossover works by selecting a random pair of bits in the genome
% of two parent, split the genome at that position and recombine the
% genomes to produce two offsprings
r = randi(nvars/2,length(parents)/2)*2−2;
x = zeros(length(parents)/2,nvars);
for i = 1:size(x,1)

x(i,1:r(i)) = thisPopulation(parents(2*i−1),1:r(i));
x(i,(r(i)+1):end) = thisPopulation(parents(2*i),(r(i)+1):end);

end

D.2 CHOOSE_K_FROM_N.M

% choose_k_from_n.m: 15.03.2011, Yves Salathe
function M = choose_k_from_n(n,k,ind1,ind2,j,M)
% choose k elements from a list of n elements in every possible way and
% return a matrix containing the choices

49



if nargin<6
M = zeros(nchoosek(n,k),k);
ind1 = 1;
ind2 = 1;
j = 1;

end
for i = ind1:(n−k+ind2)
% if i<n

l = nchoosek(n−i,k−ind2);
M(j:(j+l−1),ind2) = repmat(i,l,1);

if ind2<k
M = choose_k_from_n(n,k,i+1,ind2+1,j,M);

end
j=j+l;

end

D.3 COMPUTATIONAL_BASIS.M

% computational_basis.m: 10.05.2010, Yves Salathe
function psi = computational_basis(dim, state_nr)
% this function produces the qubit state |state_nr> in the

computational basis
% of dimension given by dim.
if (state_nr >= dim); error('input argument "state_nr" has to be

smaller than "dim"'); end;
psi = sparse(dim,1);
psi(state_nr+1) = 1;
return

D.4 CONDITIONAL_SWAP.M

% conditional_swap.m: 07.01.2011, Yves Salathe
function U = conditional_swap(ancilla_side,n_copies,n_ancillas)
% A unitary operation that swaps the states of two qubits based on the
% sate of the ancilla qubits
% ancilla_side can be either 'left' or 'right' depending on whether
% the ancilla qubits are multplied by tensor product from the left
% or from the right onto the state space

dim_copies = 2^n_copies;
dim_ancillas = 2^n_ancillas;
dim = dim_copies*dim_ancillas;
swap_states = [0,2];
P_Qubits = sparse([1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]); % permutes a

pair of Qubits

if (strcmp(ancilla_side,'left'))
ancillas_left = true;

elseif (strcmp(ancilla_side,'right'))
ancillas_left = false;

else
error('ancilla_side has to be either "left" or "right"');

end;

50



U = sparse(dim,dim);
for i = 0:dim_ancillas−1

ancillas_state = computational_basis(dim_ancillas,i);
ancillas_state = ancillas_state*ancillas_state';
U_loc = speye(dim_copies);
if ismember(i,swap_states)

for j = 1:n_copies−1
P = kron(speye(2^(n_copies−j−1)),kron(P_Qubits,speye(2^(j

−1))));
U_loc = P*U_loc;

end
end
if ancillas_left

U_loc = kron(ancillas_state,U_loc);
else

U_loc = kron(U_loc,ancillas_state);
end
U = U + U_loc;

end

D.5 CROSSOVER.M

% crossover.m: 17.05.2010, Yves Salathe
function P = crossover(n,k,l)
% permutation that acts on a n−Qubit system which moves the Qubit at
% position k to position l

dim = 2^n;
direction = +1; % +1 = forward movement; −1 = backward
if l < k; direction = −1; end;

P_Qubits = sparse([1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]); % permutes a
pair of Qubits

P = speye(dim);
for i = k:direction:(l−direction)

P_loc = P_Qubits;
if direction == 1

if i > 1; P_loc = kron(speye(2^(i−1)),P_loc); end;
if i < n−1; P_loc = kron(P_loc,speye(2^(n−i−1))); end;

else
if i > 2; P_loc = kron(speye(2^(i−2)),P_loc); end;
if i < n; P_loc = kron(P_loc,speye(2^(n−i))); end;

end
P = P_loc*P;

end

return;

D.6 DECODE_DISCRETE_ANGLES.M

% decode_discrete_angles.m: 10.01.2011, Yves Salathe
function t = decode_discrete_angles(x)
% decoder function which can be used in a genetic algortihm
% The genome, which is used as an input for the fitness function is
% encoded as follows: every pair of bits encodes an angle
% 00: 0 degrees

51



% 01: 90 degrees
% 10: 180 degrees
% 11: 270 degrees
angles = [0; pi/2; pi; 3*pi/2];
if mod(length(x)−1,2) ~= 0; error('x has to have length 2*n+1, where n

is an integer'); end;
n = (length(x)−1)/2;
% first bit tells sign of determinant
detsig = 2*x(1)−1;
% decode x
B = reshape(x(2:end),n,2);
s = 2*B(:,1)+B(:,2)+1;
t = [detsig;angles(s)];

D.7 ENTROPY_OF_ENTANGLEMENT.M

% entropy_of_entanglement.m: 11.03.2011, Yves Salathe
function E = entropy_of_entanglement(x,dimA,dimB)
% function that computes the entropy of entanglement E for a state x
% x can be either a vector (pure state) or a density matrix

% partial trace over Bob's subsystem
if(length(x) ~= dimA*dimB); error('x has to be the state vector or

density matrix of a bipartite system where the subsystem of Alice (
Bob) has dimension dimA (dimB)'); end;

rhoA = TrX(x,2,[dimA,dimB]);
% compute the eigenvalues of rhoA
lambda = eig(rhoA);
% compute the Von Neumann entropy of rhoA
tol = 1e−14;
if any(lambda+tol<0); error('rhoA should not have negative eigenvalues'

); end;
lambda = lambda(lambda>tol);
E = −sum(lambda.*log2(lambda));

D.8 EXPECTED_E.M

% expected_E.m: 17.05.2010, Yves Salathe
function E = expected_E(x,n)
% A function which calculates the expected entropy of entanglement for

the
% Schmidt Projection Method if used with n input qubits on a state

given
% by: sqrt(x)*|0> + sqrt(1−x^2)*|1>. If n and x are vectors, then the
% expected entanglement is calculated for every combination of the
% elements of n and x and the results are returned in a matrix.
x = x(:);
E = zeros(length(x),length(n));
for i = 1:length(n);

for k = 1:n(i)−1;
E(:,i) = E(:,i) + x.^(n(i)−k).*(1−x).^k.*nchoosek(n(i),k).*log2

(nchoosek(n(i),k));
end;

end;

52



D.9 FITNESS.M

% fitness.m: 08.01.2011, Yves Salathe
function [fit,rho_new] = fitness(x,args)
% measure the fitness of a distillation protocol specified by the input
% vector x. args is a structure which controls the interpretation of

the
% input vector x (i.e. mapping to unitary matrices) as well as the
% calculation of the fitness value (e.g. adding a penalty).

% generate unatry operators that act on the subsystems of Alice and Bob
[Ua,Ub] = args.operator_fn(x,args);

% form the overall unitary operator
% permutation of the second and third qubit is needed to perform
% the operations individually on the distinct subsystems of Alice (Ua)
% and Bob (Ub)
U = kron(Ua,Ub);

U = args.P'*U*args.P;

if not(isempty(args.psi_init)) % pure initial state
% apply the unitary operator to the state
new_global_state = U*args.psi_init_global;

else % mixed initial state
new_global_state = U*args.rho_init_global*U';

end

% trace out all ancilla bits and all copies except one
rho_new = TrX_fast(new_global_state,args.trace_out,...

args.trace_keep,args.trace_dimkeep,args.trace_dimtrace,...
args.trace_rdim,args.trace_n);

% measure the new fidelity
F = abs(args.psi_ref'*rho_new*args.psi_ref);

% the corresponding fitness is the distance to one (which is be
minimized)

fit = 1−F;

% penalize some solutions
if not(isempty(args.penalty_fn))

fit = fit + args.penalty_fn(x,args,Ua,Ub,U,new_global_state,rho_new
,F);

end

D.10 GATES.M

% gates.m: 17.05.2010, Yves Salathe
function G = gates(n_qubits)
% construct a set of quantum gates

dim = 2^n_qubits;

theta = acos(3/5);

H = sparse([1 1; 1 −1]/sqrt(2));
R = sparse([1 0; 0 exp(2*pi*1i*theta)]);
CNOT = sparse([1 0 0 0; 0 1 0 0; 0 0 0 1; 0 0 1 0]);

53



single_qubit_op = {H,R};
two_qubit_op = {CNOT};

G = {};

% single qubit operations
for i = 1:length(single_qubit_op)
for j = 1:n_qubits
U = single_qubit_op{i};
if j > 1; U = kron(speye(2^(j−1)),U); end;
if j < n_qubits; U = kron(U,speye(2^(n_qubits−j))); end;
G = [ G, {U} ];

end
end

% two qubit operations
for i = 1:length(two_qubit_op)
for j = 1:n_qubits
U_loc = two_qubit_op{i};
if j < n_qubits−1; U = kron(U,speye(2^(n_qubits−j−1))); end;
for k = 1:(j−1)

U = U_loc;
if j > 2; U = kron(speye(2^(j−2)),U); end;
if j < n_qubits; U = kron(U,speye(2^(n_qubits−j))); end;
P = crossover(n_qubits,k,j);
G = [ G, {P'*U*P} ];

end
for k = (j+1):n_qubits

U = U_loc;
if j > 1; U = kron(speye(2^(j−1)),U); end;
if j < n_qubits−1; U = kron(U,speye(2^(n_qubits−1−j))); end;
P = crossover(n_qubits,k,j+1);
G = [ G, {P'*U*P} ];

end
end

end

return;

D.11 HERMITIAN_INVERSE.M

%hermitean_inverse.m: 18.05.2010, Yves Salathe
function [re im] = hermitian_inverse(H)
% inverse of the mapping to a hermitian nxn matrix out of input
% vectors re and im
% the dimension n of the matrix is determined by the length m of re
% such that m = n*(n+1)/2
% im has to be of length k = n*(n−1)/2
n = size(H,1);
if n ~= size(H,2); error('H has to be a square matrix'); end;
m = .5*n*(n+1);
% check length of im
k = .5*n*(n−1);
re = zeros(m,1);
im = zeros(k,1);
re_ind = 1;
im_ind = 1;
for i=1:1:n

re_ind2 = re_ind+n−i;
im_ind2 = im_ind+n−i−1;

54



% real part
re(re_ind:re_ind2) = real(H(i,i:n));
% add imaginary part
im(im_ind:im_ind2) = imag(H(i,(i+1):n));
re_ind = re_ind2+1;
im_ind = im_ind2+1;

end

D.12 HERMITIAN.M

% hermitean.m: 17.05.2010, Yves Salathe
function H = hermitian(re, im)
% form a hermitian nxn matrix out of input vectors re and im
% the dimension n of the matrix is determined by the length m of re
% such that m = n*(n+1)/2
% im has to be of length k = n*(n−1)/2
m = length(re);
n = .5*(sqrt(1+8*m)−1);
% check whether n is an integer
if (n − floor(n) ~= 0), error('the length m of the input vector re has

to be chosen in such a way that m = n*(n+1)/2 has an integer
solution n.'), end;

% check length of im
k = .5*n*(n−1);
if (length(im)~=k), error(['the input vector im has to be of length ',

num2str(k)]), end;
H = zeros(n);
re_ind = 1;
im_ind = 1;
% transform im into a column vector
im = im(:);
for i=1:1:n

re_ind2 = re_ind+n−i;
im_ind2 = im_ind+n−i−1;
% real part
H(i,i:n) = re(re_ind:re_ind2);
H((i+1):n,i) = re(re_ind+1:re_ind2);
% add imaginary part
H(i,(i+1):n) = H(i,(i+1):n) + 1i*im(im_ind:im_ind2)';
H((i+1):n,i) = H((i+1):n,i) − 1i*im(im_ind:im_ind2);
re_ind = re_ind2+1;
im_ind = im_ind2+1;

end

D.13 IDENTITY.M

% identity.m: 07.01.2011, Yves Salathe
function [ Ua,Ub ] = identity( args )
% simple function which returns two identity matrices with the
% properties given by args. This function is useful to initialize the
% optimization

n_copies = args.n_copies;
n_ancillas_A = args.n_ancillas_A;
n_ancillas_B = args.n_ancillas_B;
Ua = speye(2^(n_copies+n_ancillas_A));
Ub = speye(2^(n_copies+n_ancillas_B));

55



end

D.14 INIT_FITNESS_ARGS.M

% fitness_args.m: 08.01.2011, Yves Salathe
function fitness_args = init_fitness_args(n_copies,n_ancillas_A,

n_ancillas_B,initstate,operator_fn,operator_args,penalty_fn,
penalty_args)

% computational basis
psi_0 = [1 0]';
psi_1 = [0 1]';
psi_00 = kron(psi_0,psi_0);
psi_11 = kron(psi_1,psi_1);

% arguments for fitness function
fitness_args = struct('n_copies',{}...

,'n_ancillas_A',{}...
,'n_qubits_A',{}...
,'n_qubits_B',{}...
,'dim_A',{}...
,'dim_B',{}...
,'dim',{}...
,'psi_ref',{}...
,'psi_init',{}...
,'psi_init_global',{}...
,'rho_init',{}...
,'rho_init_V',{}...
,'rho_init_D',{}...
,'rho_init_S',{}...
,'rho_init_global',{}...
,'F_init',{}...
,'P',{}...
,'dim_subsystems',{}...
,'trace_out',{}...
,'trace_keep',{}...
,'trace_dimkeep',{}...
,'trace_dimtrace',{}...
,'trace_rdim',{}...
,'trace_n',{}...
,'operator_fn',{}...
,'operator_args',{});

fitness_args(1).n_copies = n_copies;
fitness_args(1).n_ancillas_A = n_ancillas_A;
fitness_args(1).n_ancillas_B = n_ancillas_B;
fitness_args(1).n_qubits_A = n_copies+n_ancillas_A;
fitness_args(1).n_qubits_B = n_copies+n_ancillas_B;

% calculate the dimensions of the subsystems of Alice and Bob
fitness_args(1).dim_A = 2^fitness_args.n_qubits_A;
fitness_args(1).dim_B = 2^fitness_args.n_qubits_B;

% dimension of the combined system
fitness_args(1).dim = fitness_args.dim_A*fitness_args.dim_B;

% fully entangled state (reference)
fitness_args(1).psi_ref = (psi_00+psi_11)/sqrt(2);

% copy the initial state

56



initstate_global = initstate;
for i = 2:n_copies

initstate_global = kron(initstate_global,initstate);
end

if isvector(initstate_global) % initial state is pure
% add ancillas (initialized in the state psi_0)
for i = 1:n_ancillas_A % add ancillas of Alice

initstate_global = kron(initstate_global,psi_0);
end
for i = 1:n_ancillas_B % add ancillas of Bob

initstate_global = kron(initstate_global,psi_0);
end
% initial pure state
fitness_args(1).psi_init = initstate;
fitness_args(1).psi_init_global = initstate_global;
% initial density matrix
fitness_args(1).rho_init = initstate*initstate';
fitness_args(1).rho_init_global = initstate_global*initstate_global

';
else % initial state is mixed

% add ancillas (initialized in the state psi_0)
for i = 1:n_ancillas_A % add ancillas of Alice

initstate_global = kron(initstate_global,psi_0*psi_0');
end
for i = 1:n_ancillas_B % add ancillas of Bob

initstate_global = kron(initstate_global,psi_0*psi_0');
end
% initial density matrix
fitness_args(1).rho_init = initstate;
fitness_args(1).rho_init_global = initstate_global;

end

% eigenvalue decomposition of the initial density matrix (e.g. for
penalty functions)

if issparse(fitness_args.rho_init)
[V,D] = eigs(fitness_args.rho_init,4);

else
[V,D] = eig(fitness_args.rho_init);

end
fitness_args(1).rho_init_V = V;
fitness_args(1).rho_init_D = D;

% Von Neumann entropy of the initial density matrix (e.g. for penalty
functions)

e = diag(D);
fitness_args(1).rho_init_S = abs(−dot(e,log2(e+(e==0))));

% fidelity of the initial state
fitness_args(1).F_init = abs(fitness_args.psi_ref'*

fitness_args.rho_init*fitness_args.psi_ref);

% permutation that simplfies operations on the distinct subsystems of
Alice

% and Bob
fitness_args(1).P = permutation(n_copies,n_ancillas_A,n_ancillas_B);

% arguments for the tracing
keep_subsystem = 1;
dim_subsystems = repmat(4,1,n_copies);
if(n_ancillas_A > 0), dim_subsystems = [dim_subsystems 2^n_ancillas_A];

end;
if(n_ancillas_B > 0), dim_subsystems = [dim_subsystems 2^n_ancillas_B];

end;
n_subsystems = length(dim_subsystems);

57



trace_out = [1:(keep_subsystem−1) (keep_subsystem+1):n_subsystems];

[trace_out,dim_subsystems,keep,dimkeep,dimtrace,rdim,n] ...
= TrX_fast_args(trace_out,dim_subsystems,fitness_args.dim);

fitness_args(1).dim_subsystems = dim_subsystems;
fitness_args(1).trace_out = trace_out;
fitness_args(1).trace_keep = keep;
fitness_args(1).trace_dimkeep = dimkeep;
fitness_args(1).trace_dimtrace = dimtrace;
fitness_args(1).trace_rdim = rdim;
fitness_args(1).trace_n = n;

% pointer to function that creates the unitary operation
fitness_args(1).operator_fn = operator_fn;

% arguments for the function that creates the unitary operation
fitness_args(1).operator_args = operator_args;

% pointer to function that penalizes some solutions ({} means no
peanlty)

fitness_args(1).penalty_fn = penalty_fn;

% arguments for the function that penalizes some solutions
fitness_args(1).penalty_args = penalty_args;

D.15 INIT_OPERATOR_ARGS.M

% init_operator_args.m: 08.01.2011, Yves Salathe
function operator_args = init_operator_args(n_copies,n_ancillas_A,

n_ancillas_B,unitary,symmetry,onlyreal,determinant)
if(nargin < 7)

determinant = [];
end
operator_args = struct('n_real_entries_A',{}...

,'n_real_entries_B',{}...
,'n_imag_entries_A',{}...
,'n_imag_entries_B',{}...
,'n_entries_total',{}...
,'ind_max_real_A',{}...
,'ind_min_imag_A',{}...
,'ind_max_imag_A',{}...
,'ind_min_real_B',{}...
,'ind_max_real_B',{}...
,'ind_min_imag_B',{}...
,'unitary',{}...
,'symmetry',{}...
,'onlyreal',{}...
,'determinant',{}...
);

% calculate the dimensions of the subsystems of Alice and Bob
dim_A = (2^n_copies)*(2^n_ancillas_A);
dim_B = (2^n_copies)*(2^n_ancillas_B);

dim = dim_A*dim_B;

if unitary
if not(onlyreal)

operator_args(1).n_real_entries_A = .5*dim_A*(dim_A+1);
operator_args(1).n_real_entries_B = .5*dim_B*(dim_B+1);

else
operator_args(1).n_real_entries_A = .5*dim_A*(dim_A−1);

58



operator_args(1).n_real_entries_B = .5*dim_B*(dim_B−1);
if isempty(determinant)

operator_args(1).n_real_entries_A = operator_args(1)
.n_real_entries_A + 1;

operator_args(1).n_real_entries_B = operator_args(1)
.n_real_entries_B + 1;

end
end
operator_args(1).n_imag_entries_A = .5*dim_A*(dim_A−1);
operator_args(1).n_imag_entries_B = .5*dim_B*(dim_B−1);

else
operator_args(1).n_real_entries_A = dim_A*dim_A;
operator_args(1).n_real_entries_B = dim_B*dim_B;
operator_args(1).n_imag_entries_A = dim_A*dim_A;
operator_args(1).n_imag_entries_B = dim_B*dim_B;

end
operator_args(1).n_entries_total = operator_args.n_real_entries_A +

operator_args.n_imag_entries_A + operator_args.n_real_entries_B +
operator_args.n_imag_entries_B;

operator_args(1).ind_max_real_A = operator_args.n_real_entries_A;
if (not(onlyreal))

operator_args(1).ind_min_imag_A = operator_args.ind_max_real_A+1;
operator_args(1).ind_max_imag_A = operator_args.ind_max_real_A+

operator_args.n_imag_entries_A;
operator_args(1).ind_min_real_B = operator_args.ind_max_imag_A+1;
operator_args(1).ind_max_real_B = operator_args.ind_max_imag_A+

operator_args.n_real_entries_B;
else

operator_args(1).ind_min_real_B = operator_args.ind_max_real_A+1;
operator_args(1).ind_max_real_B = operator_args.ind_max_real_A+

operator_args.n_real_entries_B;
end
if (not(onlyreal))

operator_args(1).ind_min_imag_B = operator_args.ind_max_real_B+1;
end
operator_args(1).unitary = unitary;
operator_args(1).symmetry = symmetry;
operator_args(1).onlyreal = onlyreal;
operator_args(1).determinant = determinant;
return;

D.16 MATRIX_DIFFERENCES.M

% matrix_differences.m: 10.01.2011, Yves Salathe
function [d,J] = matrix_differences(x,T,detT,ind)
% computes the difference between a matrix T and the
% matrix parameterized by the vector x. This is useful
% as simple fitness function in a numerical optimization
% to find a certain parameterization of a matrix
Tx = orthogonal([detT;x]);
d = Tx(ind)−T(ind);

if nargout > 1 % Jacobian required
J = zeros(length(d),length(x));
for j = 1:length(x)

dT = orthogonal_deriv([detT;x],j);
J(:,j) = dT(ind);

end
end

59



D.17 MATRIX_DISTANCE.M

% matrix_distance.m: 10.01.2011, Yves Salathe
function [d,g] = matrix_distance(x,T,detT)
% computes a distance measure between a matrix T and the
% matrix parameterized by the vector x. This is useful
% as simple fitness function in a numerical optimization
% to find a certain parameterization of a matrix
x = x(:);
Tx = orthogonal([detT;x]);
diff = Tx−T;
d = sum(sum(diff.^2));

if nargout > 1 % gradient required
g = zeros(length(x),1);
for i = 1:length(x)

dT = orthogonal_deriv([detT;x],i);
g(i) = 2*sum(sum(diff.*dT));

end
end

D.18 MATRIX_DISTANCE_TO_FUN.M

% matrix_distance.m: 10.01.2011, Yves Salathe
function [d,g] = matrix_distance_to_fun(x,T,fun,varargin)
% computes a distance measure between a matrix T and the
% matrix parameterized by the vector x using the mapping computed by

the
% function fun. This is useful
% as simple fitness function in a numerical optimization
% to find a certain parameterization of a matrix
x = x(:);
Tx = fun(x);
diff = Tx−T;
d = sum(sum(diff.^2));

if nargout > 1 && not(isempty(varargin)) % gradient required
g = zeros(length(x),1);
for i = 1:length(x)

dT = varargin{1}(x,i);
g(i) = 2*sum(sum(diff.*dT));

end
end

D.19 MEASUREMENT_UNITARY.M

% measurement_unitary.m: 07.01.2011, Yves Salathe
function U = measurement_unitary(subspaces,ancilla_side,

dim_untouched_system)
% function that generates a unitary matrix that represents a

measurement
% of the projections onto the subspaces specified by the matrices
% in the cell array 'subspaces'

60



if (strcmp(ancilla_side,'left'))
ancillas_left = true;

elseif (strcmp(ancilla_side,'right'))
ancillas_left = false;

else
error('ancilla_side has to be either "left" or "right"');

end;

dim_measured_system = size(subspaces{1},1);
n_ancillas = ceil(log2(length(subspaces)));
dim_ancillas = 2^n_ancillas;
dim = dim_measured_system*dim_ancillas*dim_untouched_system;
U = sparse(dim,dim);
for i = 0:length(subspaces)−1

ancillas_input = computational_basis(dim_ancillas,i);
for j = 0:length(subspaces)−1

U_loc = kron(subspaces{j+1},speye(dim_untouched_system));
ancillas_output = computational_basis(dim_ancillas,mod(i+j,

length(subspaces)));
ancillas_operator = ancillas_output*ancillas_input';
if ancillas_left

U_loc = kron(ancillas_operator,U_loc);
else

U_loc = kron(U_loc,ancillas_operator);
end
U = U + U_loc;

end
end

for i = length(subspaces):(dim_ancillas−1)
ancillas_state = computational_basis(dim_ancillas,i);
ancillas_operator = ancillas_state*ancillas_state';
U_loc = speye(dim_measured_system*dim_untouched_system);
if ancillas_left

U_loc = kron(ancillas_operator,U_loc);
else

U_loc = kron(U_loc,ancillas_operator);
end
U = U + U_loc;

end

return

D.20 OPERATOR_ANY.M

% operator_any.m: 08.01.2011, Yves Salathe
function [Ua,Ub] = operator_any(x,args)
% Build a matrix out of the input vector x
% directly interpret the entries of the input vector as the elements of
% the matrix. args specifies whether the input vector contains only the
% real part of the matrix and whether the unitary operations are
% determined separately for Alice and Bob or if they are the same for
% both.

Ua = reshape(x(1:args.operator_args.ind_max_real_A),args.dim_A,
args.dim_A);

if (not(args.operator_args.onlyreal))
Ua = Ua + 1i*reshape(x(args.operator_args.ind_min_imag_A:

args.operator_args.ind_max_imag_A),args.dim_A,args.dim_A);
end

61



if(not(args.operator_args.symmetry))
Ub = reshape(x(args.operator_args.ind_min_real_B:

args.operator_args.ind_max_real_B),args.dim_B,args.dim_B);
if not(args.operator_args.onlyreal)

Ub = Ub + 1i*reshape(x(args.operator_args.ind_min_real_B:
args.operator_args.ind_max_real_B),x(
args.operator_args.ind_min_imag_B:end),args.dim_B,
args.dim_B);

end
else

Ub = Ua;
end

D.21 OPERATOR_NORMALIZED.M

% operator_normalized.m:
function [Ua,Ub] = operator_normalized(x,args)
% Build a matrix out of the input vector x:
% normalize each column so that it sums up to 1

Ua = reshape(x,args.dim_A−1,args.dim_A);
s = sum(Ua.^2);
Ua = [Ua; zeros(1,args.dim_A)];
Ua(end,s<1) = sqrt(1−s(s<1));
Ua(:,s>1) = Ua(:,s>1)./repmat(s(s>1),args.dim_A,1);
end
Ub = Ua;

D.22 ORTHOGONAL_DERIV.M

% orthogonal_deriv.m: 10.01.2011, Yves Salathe
function dT = orthogonal_deriv(x,i,determinant)
% form a orthogonal nxn matrix out of input vectors x
% the dimension dim of the matrix is determined by the length m of x
% such that m = n(n−1)/2
% This function computes the derivative of this parameterization w.r.t.
% the i−th parameter
%
% this function uses the recursive parameterization described in the

paper
% Raffenetti, R. C. and Ruedenberg, K. (1969), Parametrization of an

orthogonal matrix in terms of generalized eulerian angles.
International Journal of Quantum Chemistry, 4: 625âĂŞ634. doi: 10
.1002/qua.560040725

%
% see also
%Hoffman, D., Raffenetti, R. & Ruedenberg, K. 1972 Generalization of

Euler angles to N−dimensional orthogonal matrices. J. Mathem. Phys.
13, 528âĂŞ532. (doi:10.1063/1.1666011)

if isempty(determinant)
detsig = (x(1)>=0)−(x(1)<0);
x = x(2:end);

else
detsig = determinant;

end

62



x = x(:);
m = length(x);
if (i < 1 || i > m); error('i has to be an index between 1 and length(x

)−1'); end;
dim = .5*(1+sqrt(1+8*m));
if (dim − floor(dim) ~= 0), error('the length m (+1 if no determinant

is given) of the input vector re has to be chosen in such a way
that m = n*(n+1)/2 has an integer solution n.'), end;

pihalf = pi/2;
indp = triu(repmat((1:dim)',1,dim),1);
indq = triu(repmat(1:dim,dim,1),1);
indp = indp(indp>0);
indq = indq(indq>0);
p = indp(i);
q = indq(i);
ind = (q−1)*(q−2)/2;
if ind > 0

dT = orthogonal([detsig;x(1:ind)]);
else

dT = detsig;
end
ind = ind + 1;
gamma = [x(ind:(ind+q−2));pihalf];
a = cos(gamma);
b = sin(gamma);
t = [dT, zeros(size(dT,1),1); zeros(1,size(dT,2)), 1];
s = zeros(size(t));
sigma = zeros(size(t));
s(1,:) = [zeros(1,size(dT,2)) −1];
for k = 1:(q−1)

s(k+1,:) = b(k)*t(k,:)+a(k)*s(k,:);
end
% in the paper it reads t(:,k) but I think that's wrong.
sigma(p+1,1:(end−1)) = a(p)*t(p,1:(end−1))−b(p)*s(p,1:(end−1));
sigma(p+1,end) = −b(p)*s(p,end);
for k = (p+1):(q−1)

sigma(k+1,:) = a(k)*sigma(k,:);
end
dT=[zeros(p−1,q); −b(p)*t(p,:)−a(p)*s(p,:); repmat(−b((p+1):q),1,q).*

sigma((p+1):q,:)];
ind = ind + q − 1;
for n = (q+1):dim

gamma = [x(ind:(ind+n−2));pihalf];
t = [dT, zeros(size(dT,1),1); zeros(1,size(dT,2)), 1];
s = zeros(size(t));
for k = 1:(n−1)

s(k+1,1:(n−1)) = sin(gamma(k))*t(k,1:(n−1))+cos(gamma(k))*s(k
,1:(n−1));

end
dT = repmat(cos(gamma),1,n).*t − repmat(sin(gamma),1,n).*s;
ind = ind + n − 1;

end

D.23 ORTHOGONAL_DISCRETE.M

% orthogonal_discrete.m: 10.01.2011, Yves Salathe
% form an orthogonal matrix by a discrete set of Euler angles
function T = orthogonal_discrete(x)
angles = [0; pi/2; pi; 3*pi/2];
if mod(length(x)−1,2) ~= 0; error('x has to have length 2*n+1, where n

is an integer'); end;

63



n = (length(x)−1)/2;
% first bit tells sign of determinant
detsig = 2*x(1)−1;
% decode x
B = reshape(x(2:end),n,2);
s = 2*B(:,1)+B(:,2)+1;
T = orthogonal([detsig;angles(s)]);

D.24 ORTHOGONAL_INVERSE.M

% orthogonal_inverse.m: 10.01.2011, Yves Salathe
function x = orthogonal_inverse(T,method,varargin)
% from an orthogonal nxn matrix determine the parameter vector x
% the dimension dim of the matrix is determined by the length m of x
% such that m = n(n−1)/2
methods = {'lsqnonlin';'fsolve';'fminunc';'fminsearch';'cmaes';'ga_cont

';'ga_discrete';'simulannealbnd'};
method_num = 0;
for i = 1:length(methods)

if strcmp(method,methods{i}); method_num = i; end;
end
dim = size(T,1);
m = .5*dim*(dim−1);
detT = det(T);
fmin = Inf;
ind = triu(ones(dim),1)>0;
bestx = 2*pi*rand(m,1);
bestf = Inf;
iter = 1;
maxiter = 10;
while (fmin>1e−5 && iter <= maxiter)

if not(isempty(varargin))
x_init = varargin{1};

else
x_init = 2*pi*rand(m,1);

end
if method_num == 1

f = @(x) matrix_differences(x,T,detT,ind);
options = optimset('Jacobian','on','Diagnostics','on','TolFun'

,1e−6,'TypicalX',pi*ones(m,1),'Display','iter');
[x,fmin] = lsqnonlin(f,x_init,[],[],options);

elseif method_num == 2
f = @(x) matrix_differences(x,T,detT,ind);
options = optimset('Jacobian','on','Diagnostics','on','TolFun'

,1e−6,'TypicalX',pi*ones(m,1),'Display','iter');
[x,fmin] = fsolve(f,x_init,options);
fmin = sum(sum(fmin.^2));

elseif method_num == 3
f = @(x) matrix_distance(x,T,detT);
options = optimset('GradObj','on','Diagnostic','on','TolFun',1e

−6,'TypicalX',pi*ones(m,1),'Display','iter');
[x,fmin] = fminunc(f,x_init,options);

elseif method_num == 4
f = @(x) matrix_distance(x,T,detT);
options = optimset('TolFun',1e−6);
[x,fmin] = fminsearch(f,x_init,options);

elseif method_num == 5
OPTS = cmaes;
%OPTS.DiagonalOnly='(1+100*N/sqrt(popsize))'; % C is diagonal

for given iterations, 1==always
OPTS.TolFun = 1e−6;

64



OPTS.SaveVariables = 'off';
OPTS.DispModulo='5 % [0:Inf], disp messages after every i−th

iteration';
[x,fmin] = cmaes('matrix_distance',x_init,pi*ones(m,1),OPTS,T,

detT);
elseif method_num == 6

f = @(x) matrix_distance(x,T,detT);
options = gaoptimset('Display','final');
[x,fmin] = ga(f,m,options);

elseif method_num == 7
f = @(x) matrix_distance_to_fun(decode_discrete_angles([(detT

+1)/2,x]),T,@orthogonal);
options = gaoptimset('PopulationType','bitstring','MutationFcn'

,@mutationuniform,'CrossoverFcn',@angle_crossover);
[x,fmin] = ga(f,2*m,options);
x = decode_discrete_angles([(detT+1)/2,x]);
x = x(2:end);

elseif method_num == 8
f = @(x) matrix_distance(x,T,detT);
options = saoptimset('PlotFcns',{@saplotbestx,...

@saplotbestf,@saplotx,@saplotf});
[x,fmin] = simulannealbnd(f,x_init,zeros(m,1),2*pi*ones(m,1),

options);
else

error(['method ', method, ' unknown']);
end
if fmin < bestf

bestx = x;
bestf = fmin;

end
disp(['iter = ', num2str(iter), ', fmin = ', num2str(fmin), ',

bestf = ', num2str(bestf)]);
save(['variables_iter_' num2str(iter) '.mat'],'−mat','x','fmin','

bestx','bestf','method_num');
save(['variables_x_iter_' num2str(iter) '.txt'],'−ASCII','x');
% method_num = mod(method_num,length(methods)) + 1; % next time try

another method
iter = iter + 1;

end
if (fmin>1e−5); error('no good approximation of T has been found'); end

;
x = bestx(:);
x = [detT;x];

D.25 ORTHOGONAL.M

% orthogonal.m: 10.01.2011, Yves Salathe
function T = orthogonal(x,determinant)
% form an orthogonal nxn matrix out of input vectors x
% the dimension dim of the matrix is determined by the length m+1 of x
% such that m = n(n−1)/2
% the first component of the vector just indicates the sign of the
% determinant of the unitary matrix
%
% this function uses the recursive parameterization described in the

paper
% Raffenetti, R. C. and Ruedenberg, K. (1969), Parametrization of an

orthogonal matrix in terms of generalized eulerian angles.
International Journal of Quantum Chemistry, 4: 625âĂŞ634. doi: 10
.1002/qua.560040725

%

65



% see also
%Hoffman, D., Raffenetti, R. & Ruedenberg, K. 1972 Generalization of

Euler angles to N−dimensional orthogonal matrices. J. Mathem. Phys.
13, 528âĂŞ532. (doi:10.1063/1.1666011)

if isempty(determinant)
T = (x(1)>=0)−(x(1)<0);
x = x(2:end);

else
T = determinant;

end
x = x(:);
m = length(x);
dim = .5*(1+sqrt(1+8*m));
if (dim − floor(dim) ~= 0), error('the length m (+1 if no determinant

is given) of the input vector re has to be chosen in such a way
that m = n*(n−1)/2 has an integer solution n.'), end;

pihalf = pi/2;
ind = 1;
for n = 2:dim

gamma = [x(ind:(ind+n−2));pihalf];
t = [T, zeros(size(T,1),1); zeros(1,size(T,2)), 1];
s = zeros(size(t));
s(1,:) = [zeros(1,size(T,2)) −1];
for k = 1:(n−1)

s(k+1,:) = sin(gamma(k))*t(k,:)+cos(gamma(k))*s(k,:);
end
T = repmat(cos(gamma),1,n).*t − repmat(sin(gamma),1,n).*s;
ind = ind + n − 1;

end

D.26 PENALTY_IDENT.M

% penalty_ident.m: 17.05.2011, Yves Salathe
function p = penalty_ident(x,args,Ua,Ub,U,new_global_state,rho_new,F)
% penalize those solutions that do leave the initial state identical to
% what it was before application of the protocol
% do not penalize any solution that has a better fidelity than the

inital
% fidelity
p = 0;
if F<args.F_init

[V,D] = eig(rho_new);
e = diag(D);
e = e+(e==0);
Srel = abs(−trace(args.rho_init*V*diag(log2(e))*V'))−

args.rho_init_S;
p = max(args.penalty_args.p_max−args.penalty_args.factor*Srel,0);

end
return;

D.27 PERMUTATION.M

% permutation.m: 08.01.2011, Yves Salathe
function P = permutation(n_copies,n_ancillas_A,n_ancillas_B)
% permute qubits of Alice and Bob in such a way, that the first n

Qubits

66



% comprise the subsystem of Alice and the last n Qubits the one of Bob.
% This is useful in order to apply separate unitary operations on the
% two subsystems (i.e. kron(Ua,Ub))

% calculate the dimensions of the subsystems of Alice and Bob
dim_ancillas_A = 2^n_ancillas_A;
dim_ancillas_B = 2^n_ancillas_B;
dim_A = (2^n_copies)*dim_ancillas_A;
dim_B = (2^n_copies)*dim_ancillas_B;

% dimension of the entire system
dim = dim_A*dim_B;

% the following operator permutes two neighbouring qubits
P_Qubits = sparse([1 0 0 0; 0 0 1 0; 0 1 0 0; 0 0 0 1]); % permutes a

pair of Qubits

% prepare permutation operator that acts on the whole system
P = speye(dim);

% permutation of the qubits, so that the unitary operations Ua and Ub
act

% on the distinct subsystems of Alice and Bob
% (don't touch the ancillary qubits as they are initially separated)
for i = 1:(n_copies−1)

n_permutations = n_copies−i;
P_loc = speye(2^i);
for j = 1:n_permutations

P_loc = kron(P_loc,P_Qubits);
end
P_loc = kron(P_loc,speye(2^(i+n_ancillas_A+n_ancillas_B)));
P = P_loc*P;

end

% now permute the ancillas of alice to the middle
for i = 1:n_ancillas_A

for j = 1:n_copies
P_loc = speye(2^(2*n_copies−j+i−1));
P_loc = kron(P_loc,P_Qubits);
P_loc = kron(P_loc,speye(2^(n_ancillas_A+n_ancillas_B−i+j−1)));
P = P_loc*P;

end
end

D.28 PLOTCMAESDAT_FITNESS.M

function plotcmaesdat(figNb, step, filenameprefix,filenameextension,
objectvarname,logf)

% PLOTCMAESDAT;
% PLOTCMAES(FIGURENUMBER_iBEGIN_iEND, FILENAMEPREFIX, FILENAMEEXTENSION

, OBJECTVARNAME);
% plots output from CMA−ES, e.g. cmaes.m, Java class

CMAEvolutionStrategy...
% mod(figNb,100)==1 plots versus iterations.
%
% PLOTCMAES([101 300]) plots versus iteration, from iteration 300.
% PLOTCMAES([100 150 800]) plots versus function evaluations, between

iteration 150 and 800.
%

67



% Upper left subplot: blue/red: function value of the best solution in
the

% recent population, cyan: same function value minus best
% ever seen function value, green: sigma, red: ratio between
% longest and shortest principle axis length which is equivalent
% to sqrt(cond(C)).
% Upper right plot: time evolution of the distribution mean (default)

or
% the recent best solution vector.
% Lower left: principle axes lengths of the distribution ellipsoid,
% equivalent with the sqrt(eig(C)) square root eigenvalues of C.
% Lower right: magenta: minimal and maximal "true" standard deviation
% (with sigma included) in the coordinates, other colors: sqrt(diag(C

))
% of all diagonal elements of C, if C is diagonal they equal to the
% lower left.
%
% Files [FILENAMEPREFIX name FILENAMEEXTENSION] are used, where
% name = axlen, OBJECTVARNAME (xmean|xrecentbest), fit, or stddev.
%
manual_mode = 1;

if nargin < 1 || isempty(figNb)
figNb = 325;

end
if nargin < 2 || isempty(step)
step = 1;

end
if nargin < 3 || isempty(filenameprefix)
filenameprefix = 'outcmaes';

end
if nargin < 4 || isempty(filenameextension)
filenameextension = '.dat';

end
if nargin < 5 || isempty(objectvarname)
objectvarname = 'xmean';
objectvarname = 'xrecentbest';

end
if nargin < 6 || isempty(logf)
logf = false;

end

% load data
% d.x = load([filenameprefix objectvarname filenameextension]);
% d.x = load([filenameprefix 'xmean' filenameextension]);
% d.x = load([filenameprefix 'xrecentbest' filenameextension]);
d.f = load([filenameprefix 'fit' filenameextension]);
d.std = load([filenameprefix 'stddev' filenameextension]);

% d.D = load([filenameprefix 'axlen' filenameextension]);

% interpret entries in figNb for cutting out some data
if length(figNb) > 1
iend = inf;
istart = figNb(2);
if length(figNb) > 2

iend = figNb(3);
end
figNb = figNb(1);

% d.x = d.x(d.x(:,1) >= istart & d.x(:,1) <= iend, :);
d.f = d.f(d.f(:,1) >= istart & d.f(:,1) <= iend, :);
d.std = d.std(d.std(:,1) >= istart & d.std(:,1) <= iend, :);

% d.D = d.D(d.D(:,1) >= istart & d.D(:,1) <= iend, :);
end

% set up figure window

68



if manual_mode
figure(figNb); % just create and raise the figure window

else % try to prevent raise
if evalin('caller', 'countiter') <= 2 && evalin('caller', 'irun')

== 1
figure(324);

elseif gcf ~= 324
if ismember(324, findobj('Type', 'figure'))

set(0, 'CurrentFigure', 324); % prevents raise of figure
window

else
figure(324);

end
end

end

% decide for x−axis
iabscissa = 2; % 1== versus iterations, 2==versus fevals
if mod(figNb,100) == 1
iabscissa = 1; % a short hack

end
% if iabscissa == 1
% xlab ='iterations';
% elseif iabscissa == 2
% xlab = 'function evaluations';
% end

% if size(d.x, 2) < 1000
% minxend = 1.03*d.x(end, iabscissa);
% else
% minxend = 0;
% end

% plot fitness etc
foffset = 0;
dfit = d.f(:,6)−min(d.f(:,6));
[ignore idxbest] = min(dfit);
dfit(dfit<1e−98) = NaN;

% subplot(2,2,1); hold off;
dd = abs(d.f(:,7:8)) + foffset;
dd(d.f(:,7:8)==0) = NaN;
subplot(2,2,1)
if logf

semilogy(d.f(1:step:end,iabscissa), dd(1:step:end,:), '−k'); hold
on;

else
plot(d.f(1:step:end,iabscissa), dd(1:step:end,:), '−k'); hold on;

end
% additional fitness data, for example constraints values
if size(d.f,2) > 8
dd = abs(d.f(:,9:end)) + 10*foffset; % a hack
% dd(d.f(:,9:end)==0) = NaN;
subplot(2,2,1)
if logf

semilogy(d.f(1:step:end,iabscissa), dd(1:step:end), '−m'); hold
on;

else
plot(d.f(1:step:end,iabscissa), dd(1:step:end), '−m'); hold on;

end
if size(d.f,2) > 12

if logf
semilogy(d.f(1:step:end,iabscissa),abs(d.f(1:step:end,[7 8

11 13]))+foffset,'−k'); hold on;
else

69



plot(d.f(1:step:end,iabscissa),abs(d.f(1:step:end,[7 8 11
13]))+foffset,'−k'); hold on;

end
end

end

if logf
idx = find(d.f(1:step:end,6)>1e−98); % positive values
if ~isempty(idx) % otherwise non−log plot gets hold

semilogy(d.f(idx,iabscissa), d.f(idx,6)+foffset, 'b'); hold on;
end
idx = find(d.f(1:step:end,6) < −1e−98); % negative values
if ~isempty(idx)

semilogy(d.f(idx, iabscissa), abs(d.f(idx,6))+foffset,'r');
hold on;

end
semilogy(d.f(1:step:end,iabscissa),abs(d.f(1:step:end,6))+foffset

,'−b'); hold on;
else

plot(d.f(1:step:end,iabscissa), d.f(1:step:end,6)+foffset, '.−b')
; hold on;

end

subplot(2,2,2)
semilogy(d.f(1:step:end,iabscissa),dfit(1:step:end),'−c'); hold on;
subplot(2,2,4)
plot(d.f(1:step:end,iabscissa),(d.f(1:step:end,4)),'−r'); hold on; %

AR
subplot(2,2,3)
semilogy(d.std(1:step:end,iabscissa), [max(d.std(1:step:end,6:end),

[], 2) ...
min(d.std(1:step:end,6:end), [], 2)], '−m'); % max,min std

maxval = max(d.std(end,6:end));
minval = min(d.std(end,6:end));
text(d.std(end,iabscissa), maxval, sprintf('%.0e', maxval));
text(d.std(end,iabscissa), minval, sprintf('%.0e', minval));

subplot(2,2,3)
semilogy(d.std(1:step:end,iabscissa),(d.std(1:step:end,3)),'−g'); %

sigma
% plot best f
subplot(2,2,2)
semilogy(d.f(idxbest,iabscissa),min(dfit),'*c'); hold on;
subplot(2,2,1)
if logf
semilogy(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r');

hold on;
else
plot(d.f(idxbest,iabscissa),abs(d.f(idxbest,6))+foffset,'*r'); hold

on;
end

subplot(2,2,1)
ax = axis;
% ax(2) = max(minxend, ax(2));
axis(ax);

if logf
xannote = 10^(log10(ax(1)) + 0.05*(log10(ax(2))−log10(ax(1))));
yannote = 10^(log10(ax(3)) + 0.05*(log10(ax(4))−log10(ax(3))));

else
xannote = ax(1) + 0.05*(ax(2)−ax(1));
yannote = ax(3) + 0.05*(ax(4)−ax(3));

end

70



text(xannote, yannote, ...
[ 'f=' num2str(d.f(end,6), '%.15g') ]);

text_xlabel = '# fun. eval.';
subplot(2,2,1)
title('(a)')
xlabel(text_xlabel);
ylabel('fitness value f');
grid on;
subplot(2,2,2)
title('(b)')
xlabel(text_xlabel);
ylabel('f−min(f)');
grid on;
subplot(2,2,3)
title('(c)')
xlabel(text_xlabel);
ylabel('sigma');
grid on;
subplot(2,2,4)
title('(d)')
xlabel(text_xlabel);
ylabel('axis ratio');
grid on;

% title('blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio');
% ax([3,4]) = [1e−9, 1e5];
% axis(ax);

% % plot x−values
% subplot(2,2,2); hold off;
% plot(d.x(:,iabscissa), d.x(:,6:end),'−'); hold on;
% ax = axis;
% ax(2) = max(minxend, ax(2));
% axis(ax);
%
% % add some annotation lines
% [ignore idx] = sort(d.x(end,6:end));
% % choose no more than 25 indices
% idxs = round(linspace(1, size(d.x,2)−5, min(size(d.x,2)−5, 25)));
% yy = repmat(NaN, 2, size(d.x,2)−5);
% yy(1,:) = d.x(end, 6:end);
% yy(2,idx(idxs)) = linspace(ax(3), ax(4), length(idxs));
% plot([d.x(end,iabscissa) ax(2)], yy, '−');
% plot(repmat(d.x(end,iabscissa),2), [ax(3) ax(4)], 'k−');
% for i = idx(idxs)
% text(ax(2), yy(2,i), ...
% ['x(' num2str(i) ')=' num2str(yy(1,i), '%.3g')]);
% end
% title(['Object Variables (' num2str(size(d.x, 2)−5) '−D)']);grid on;
%
% subplot(2,2,3); hold off; semilogy(d.D(:,iabscissa), d.D(:,6:end),

'−');
% ax = axis;
% ax(2) = max(minxend, ax(2));
% axis(ax);
% title('Principle Axes Lengths');grid on;
% xlabel(xlab);
%
% subplot(2,2,4); hold off;
% % semilogy(d.std(:,iabscissa), d.std(:,6:end), 'k−'); hold on;
% % remove sigma from stds
% d.std(:,6:end) = d.std(:,6:end) ./ (d.std(:,3) * ones(1,size(d.std

,2)−5));
% semilogy(d.std(:,iabscissa), d.std(:,6:end), '−'); hold on;

71



% if 11 < 3 % max and min std
% semilogy(d.std(:,iabscissa), [d.std(:,3).*max(d.std(:,6:end), [],

2) ...
% d.std(:,3).*min(d.std(:,6:end), [], 2)], '−m',

'linewidth', 2);
% maxval = max(d.std(end,6:end));
% minval = min(d.std(end,6:end));
% text(d.std(end,iabscissa), d.std(end,3)*maxval, sprintf('max=%.0e

', maxval));
% text(d.std(end,iabscissa), d.std(end,3)*minval, sprintf('min=%.0e

', minval));
% end
% ax = axis;
% ax(2) = max(minxend, ax(2));
% axis(ax);
% % add some annotation lines
% [ignore idx] = sort(d.std(end,6:end));
% % choose no more than 25 indices
% idxs = round(linspace(1, size(d.x,2)−5, min(size(d.x,2)−5, 25)));
% yy = repmat(NaN, 2, size(d.std,2)−5);
% yy(1,:) = d.std(end, 6:end);
% yy(2,idx(idxs)) = logspace(log10(ax(3)), log10(ax(4)), length(idxs))

;
% semilogy([d.std(end,iabscissa) ax(2)], yy, '−');
% semilogy(repmat(d.std(end,iabscissa),2), [ax(3) ax(4)], 'k−');
% for i = idx(idxs)
% text(ax(2), yy(2,i), [' ' num2str(i)]);
% end
% title('Standard Deviations in Coordinates divided by sigma');grid on

;
% xlabel(xlab);

if figNb ~= 324
% zoom on; % does not work in Octave

end
drawnow;

D.29 PLOT_FIDELITY.M

% plot_fidelity.m: 28.02.2011, Yves Salathe
function [F,rho_new,rho,rhonz,ind_row,ind_col,lables,E_input,E_output,

E_max] = plot_fidelity(n_copies,n_ancillas_A,n_ancillas_B,Ua,Ub,c)
% this function plots the fidelity of a protocol specified by the
% unitary matrices Ua and Ub if applied on the pure state
% c|00> + sqrt(1−c^2)|11>
psi_0 = [1 0]';
psi_1 = [0 1]';
psi_00 = kron(psi_0,psi_0);
psi_11 = kron(psi_1,psi_1);
psi_ref = (psi_00+psi_11)/sqrt(2);
F = zeros(length(c),1);
E_input = zeros(length(c),1);
E_max = zeros(length(c),1);
E_output = zeros(length(c),1);
rho_new = cell(length(c),1);
rho = zeros(length(c),16);

% arguments for the tracing
keep_subsystem = 1;
dim_subsystems = repmat(4,1,n_copies);

72



if(n_ancillas_A > 0), dim_subsystems = [dim_subsystems 2^n_ancillas_A];
end;

if(n_ancillas_B > 0), dim_subsystems = [dim_subsystems 2^n_ancillas_B];
end;

dimA = 2^(n_copies+n_ancillas_A);
dimB = 2^(n_copies+n_ancillas_B);
n_subsystems = length(dim_subsystems);
trace_out = [1:(keep_subsystem−1) (keep_subsystem+1):n_subsystems];
P = permutation(n_copies,n_ancillas_A,n_ancillas_B);
for j = length(c):−1:1

initstate = c(j)*psi_00+sqrt(1−c(j)^2)*psi_11;
% also measure the entropy of entanglement of initstate
E_input(j) = entropy_of_entanglement(initstate,2,2);
% copy the initial state
initstate_global = initstate;
for i = 2:n_copies

initstate_global = kron(initstate_global,initstate);
end
% add ancillas (initialized in the state psi_0)
for i = 1:n_ancillas_A % add ancillas of Alice

initstate_global = kron(initstate_global,psi_0);
end
for i = 1:n_ancillas_B % add ancillas of Bob

initstate_global = kron(initstate_global,psi_0);
end
% also measure the entropy of entanglement of initstate_global
%E_max(j) = entropy_of_entanglement(P*initstate_global,dimA,dimB);

% form the overall unitary operator
% permutation of the second and third qubit is needed to perform
% the operations individually on the distinct subsystems of Alice (

Ua)
% and Bob (Ub)
U = kron(Ua,Ub);
U = P'*U*P;
% apply the unitary operator to the state
new_global_state = U*initstate_global;
% compute the eigenvalues of rhoA
rhoA = TrX(P*new_global_state,2,[dimA,dimB]);
lambda = eig(rhoA);

% trace out all ancilla bits and all copies except one
rho_new{j} = TrX(new_global_state,trace_out,dim_subsystems);
% measure the new fidelity
F(j) = abs(psi_ref'*rho_new{j}*psi_ref);
% also measure the entropy of entanglement
E_output(j) = entropy_of_entanglement(rho_new{j},2,2);
% compute the eigenvalues of rhoA
%rhoA2 = TrX(rho_new{j},2,[2,2]);
%lambda2 = eig(rhoA2);
E_max(j) = upper_E(lambda);
rho(j,:) = rho_new{j}(:);

end
figure()
subplot(3,1,1)
plot(c,F)
subplot(3,1,2)
plot(c,E_input,'−^',c,E_max,'−v',c,E_output,'−x')
subplot(3,1,3)
rhonz = [];
ind_row = [];
ind_col = [];
labels = {};
for i = 1:16

73



if(nnz(abs(rho(:,i)>1e−12))>0)
rhonz = [rhonz rho(:,i)];
[row col] = ind2sub([4 4],i);
ind_row = [ind_row; row];
ind_col = [ind_col; col];
labels = [labels,{['\rho_{' num2str(row) ',' num2str(col) '}'

]}];
end

end
plot(repmat(c(:),1,size(rhonz,2)),rhonz)
legend(labels);

D.30 QUBIT_STATES.M

% qubit_states.m: 10.05.2010, Yves Salathe
function states = qubit_states(n_qubits)
% this function generates cell array containing the state vectors of

all
% possible states of an n_qubit system

dim_loc = 2^n_qubits;
qubit = {[1 0]',[0 1]'};
states = cell(dim_loc,1);
for i = 1:dim_loc

states{i} = qubit{mod(i−1,2)+1};
d = floor((i−1)/2);
for j = 1:n_qubits−1

states{i} = kron(qubit{mod(d,2)+1},states{i});
d = floor(d/2);

end
if (d ~= 0); error(['failed to generate state ',num2str(i)]); end;

end

D.31 READ_ANCILLA_STATES.M

% read_ancilla_states.m: 17.05.2010, Yves Salathe
function states = read_ancilla_states(psi,n_ancillas_A,n_ancillas_B)
% function that measures the state of the ancilla qubits in the
% computational basis

dim = size(psi,1);
tol = 1e−15;
dim_ancillas_A = 2^n_ancillas_A;
dim_ancillas_B = 2^n_ancillas_B;
dim_ancillas = dim_ancillas_A*dim_ancillas_B;
dim_copies = dim/dim_ancillas;
if (dim_copies ~= floor(dim_copies)); error('the dimension of psi has

to be dividable by the dimensions of the ancillas'); end;
dim_subsystems = [dim_ancillas_A dim_copies dim_ancillas_B];
trace_over = [1 3];
states = cell(dim_ancillas_A,dim_ancillas_B);
for i = 0:dim_ancillas_A−1

ancilla_state_A = computational_basis(dim_ancillas_A,i);
ancilla_state_A = ancilla_state_A*ancilla_state_A';
for j = 0:dim_ancillas_B−1

ancilla_state_B = computational_basis(dim_ancillas_B,j);

74



ancilla_state_B = ancilla_state_B*ancilla_state_B';
% project onto ancilla state
P = kron(ancilla_state_A,kron(speye(dim_copies),ancilla_state_B

));
psi_new = P*psi;
% trace out the ancillas after the projection
state = TrX(psi_new,trace_over,dim_subsystems);
if(norm(state(:))>tol)

states{i+1,j+1} = state;
else

states{i+1,j+1} = 0;
end

end
end

D.32 SCHMIDT_PROJECTION_MEASUREMENT_UNITARY.M

% schmidt_projection_measurement_unitary.m: 08.01.2011, Yves Salathe
function U = schmidt_projection_measurement_unitary(ancilla_side,

n_copies, n_untouched_copies)
% generates a unitary operation that represents the Schmidt projection
% measurement on two qubits using two additional ancilla qubits to make
% the measurement reversible.
% ancilla_side can be either 'left' or 'right' depending on whether
% the ancilla qubits are multplied by tensor product from the left
% or from the right onto the state space

dim_copies = 2^(n_copies−n_untouched_copies);
dim_untouched_copies = 2^n_untouched_copies;

psi_0 = computational_basis(dim_copies,0);
psi_1 = computational_basis(dim_copies,1);
psi_2 = computational_basis(dim_copies,2);
psi_3 = computational_basis(dim_copies,3);

subspaces = {psi_0*psi_0', ...
(psi_1*psi_1' + psi_2*psi_2'), ...
psi_3*psi_3'};

U = measurement_unitary(subspaces,ancilla_side,dim_untouched_copies);

return

D.33 SCHMIDT_PROJECTION_METHOD_UNITARY.M

% schmidt_projection_method_unitary.m: 08.01.2011, Yves Salathe
function [Ua,Ub] = schmidt_projection_method_unitary(args)
% generates two unitary matrices that represent the Schmidt projection
% method on two pairs of qubits using some ancilla qubits.

n_copies = args.n_copies;
n_ancillas_A = args.n_ancillas_A;
n_ancillas_B = args.n_ancillas_B;
n_untouched_copies_A = args.operator_args.n_untouched_copies_A;
n_untouched_copies_B = args.operator_args.n_untouched_copies_B;
% Schmidt Projection
Ua = schmidt_projection_measurement_unitary('right',n_copies,

n_untouched_copies_A);

75



Ub = schmidt_projection_measurement_unitary('right',n_copies,
n_untouched_copies_B);

% Standardization
Ua = kron(standardization_unitary(),speye(2^(n_untouched_copies_A+

n_ancillas_A)))*Ua;
Ub = kron(standardization_unitary(),speye(2^(n_untouched_copies_B+

n_ancillas_B)))*Ub;
% Conditional Swap
Ua = conditional_swap('right',n_copies,n_ancillas_A)*Ua;
Ub = conditional_swap('right',n_copies,n_ancillas_B)*Ub;

return

D.34 SKEW_SYMMETRIC_INVERSE.M

% skew_symmetric_inverse.m: 08.01.2011
function re = skew_symmetric_inverse(H)
% from a skew−symmetric nxn matrix, determine the input vector re of

the
% parameterization that is done in skew_symmetric.m
% the dimension n of the matrix is determined by the length m of re
% such that m = n*(n+1)/2
n = size(H,1);
if n ~= size(H,2); error('H has to be a square matrix'); end;
m = .5*n*(n−1);
re = zeros(m,1);
re_ind = 1;
for i=1:1:n

re_ind2 = re_ind+n−i−1;
% real part
re(re_ind:re_ind2) = real(H(i,(i+1):n));
re_ind = re_ind2+1;

end

D.35 SKEW_SYMMETRIC.M

% skew_symmetric.m: 08.01.2011, Yves Salathe
function H = skew_symmetric(re)
% form a skew−symmetric nxn matrix out of input vector re of
% the dimension n of the matrix is determined by the length m of re
% such that m = n*(n+1)/2
m = length(re);
n = .5*(sqrt(1+8*m)+1);
% check whether n is an integer
if (n − floor(n) ~= 0), error('the length m of the input vector re has

to be chosen in such a way that m = n*(n−1)/2 has an integer
solution n.'), end;

H = zeros(n);
re_ind = 1;
for i=1:1:n

re_ind2 = re_ind+n−i−1;
% real part
H(i,(i+1):n) = re(re_ind:re_ind2);
H((i+1):n,i) = −re(re_ind:re_ind2);
re_ind = re_ind2+1;

end

76



D.36 STANDARDIZATION_UNITARY.M

% standardization_unitary.m: 17.05.2010, Yves Salathe
function U = standardization_unitary()
% the standardization process used in the Schmidt projection method for
% 2 qubits

U = computational_basis(4,1)*computational_basis(4,0)'...
+ computational_basis(4,0)*computational_basis(4,1)'...
+ computational_basis(4,2)*computational_basis(4,2)'...
+ computational_basis(4,3)*computational_basis(4,3)';

D.37 SYMMETRIC.M

% symmetric.m: 17.05.2010, Yves Salathe
function H = symmetric(x)
% form symmetric matrix out of input vector x

m = length(x);
n = (sqrt(1+8*m)−1)/2;
H = zeros(n);
ind = 1;
for i=1:1:n

ind2 = ind+n−i;
H(i,i:n) = x(ind:ind2);
H((i+1):n,i) = x(ind+1:ind2);
ind = ind2+1;

end

D.38 TEST_CONTOPT_3COPIES.M

%test_contopt.m: 18.05.2010, Yves Salathe
% script to test the continuous optimization
% tries to find the optimal protocol for a pure state
psi_0 = [1 0]';
psi_1 = [0 1]';
psi_00 = kron(psi_0,psi_0);
psi_11 = kron(psi_1,psi_1);
initstate = sqrt(.1)*psi_00 + sqrt(.9)*psi_11;
operator_args = init_operator_args(3,2,2);
fitness_args = init_fitness_args(3,2,2,initstate,@unitary_continuous,

operator_args,{},{});
OPTS = cmaes;
cmaes('fitness',randn(2048,1),ones(2048,1),OPTS,fitness_args)

D.39 TEST_CONTOPT_3COPIES_SYMMETRY.M

% test_cmaes_3copies_symmetry_onlyreal.m: 08.01.2011, Yves Salathe
% script to test the continuous optimization
% tries to find the optimal protocol for 3 copies of a pure state

77



% starts with the schmidt projection with conditional swap as the
% initial guess
% always does the same operation for Alice and Bob
% only takes into account orthogonal matrices instead of general

unitary
% operations

n_copies = 3;
n_ancillas_A = 2;
n_ancillas_B = 2;
c = sqrt(.1);
s = sqrt(.9);
operator_args = struct('n_untouched_copies_A',1,'n_untouched_copies_B'

,1);
initstate = full(c*computational_basis(4,0)+s*computational_basis(4,3))

;
phi_plus = full(sqrt(.5)*(computational_basis(4,0)+computational_basis

(4,3)));
% init_F = abs(dot(initstate,phi_plus))^2
% operator_fn = @(x,args) schmidt_projection_method_unitary(args);
%operator_fn = @(x,args) identity(args);
% fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,operator_fn,operator_args,{},{});
% [fit,rho_new] = fitness({},fitness_args)

% expected fidelity
%p = .5*(1+2*c^2*s^2)
% actual fidelity
%F = 1−fit

% optimization
tol = 1e−10;
%[Ua,Ub] = schmidt_projection_method_unitary(fitness_args);
%if norm(Ua−Ub) > tol; error('operations Ua and Ub have to be identical

'); end;
%if norm(Ua*Ua'−eye(size(Ua))) > tol; error('operations Ua and Ub have

to be unitary'); end;
%if norm(sum(sum(abs(imag(Ua))))) > tol; error('operations Ua and Ub

have to be real valued'); end;
% find parameters for Ua
%x_init = orthogonal_inverse2(Ua);
dim = 2^(n_copies+n_ancillas_A);
x_init = 2*pi*rand(dim^2)−pi;
size(x_init)
operator_args = init_operator_args(n_copies,n_ancillas_A,n_ancillas_B,

true,true,false);
fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,@unitary_continuous2,operator_args,{},{});
init_F = fitness(x_init,fitness_args)
OPTS = cmaes;
%OPTS.DiagonalOnly='(1+100*N/sqrt(popsize))'; % C is diagonal for

given iterations, 1==always
OPTS.SaveVariables = 'off';
OPTS.DispModulo='5 % [0:Inf], disp messages after every i−th iteration

';
cmaes('fitness',x_init,ones(length(x_init),1)/100,OPTS,fitness_args)
save('variables_test_sp_3_onlyreal.mat');

D.40 TEST_CONTOPT_3COPIES_SYMMETRY_ONLYREAL.M

% test_contopt_3copies_symmetry_onlyreal.m: 08.01.2011, Yves Salathe

78



% script to test the continuous optimization
% tries to find the optimal protocol for 3 copies of a pure state
% starts with the schmidt projection with conditional swap as the
% initial guess
% always does the same operation for Alice and Bob
% only takes into account orthogonal matrices instead of general

unitary
% operations

n_copies = 3;
n_ancillas_A = 2;
n_ancillas_B = 2;
c = sqrt(.1);
s = sqrt(.9);
operator_args = struct('n_untouched_copies_A',1,'n_untouched_copies_B'

,1);
initstate = full(c*computational_basis(4,0)+s*computational_basis(4,3))

;
phi_plus = full(sqrt(.5)*(computational_basis(4,0)+computational_basis

(4,3)));
% init_F = abs(dot(initstate,phi_plus))^2
% operator_fn = @(x,args) schmidt_projection_method_unitary(args);
%operator_fn = @(x,args) identity(args);
% fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,operator_fn,operator_args,{},{});
% [fit,rho_new] = fitness({},fitness_args)

% expected fidelity
%p = .5*(1+nchoosek(2,1)*c^2*s^2)
% actual fidelity
%F = 1−fit

% optimization
tol = 1e−10;
%[Ua,Ub] = schmidt_projection_method_unitary(fitness_args);
%if norm(Ua−Ub) > tol; error('operations Ua and Ub have to be identical

'); end;
%if norm(Ua*Ua'−eye(size(Ua))) > tol; error('operations Ua and Ub have

to be unitary'); end;
%if norm(sum(sum(abs(imag(Ua))))) > tol; error('operations Ua and Ub

have to be real valued'); end;
% find parameters for Ua
%x_init = orthogonal_inverse2(Ua);
dim = 2^(n_copies+n_ancillas_A);
x_init = 2*pi*rand(dim*(dim−1)/2+1)−pi;
size(x_init)
operator_args = init_operator_args(n_copies,n_ancillas_A,n_ancillas_B,

true,true,true);
fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,@unitary_continuous,operator_args,{},{});
init_F = fitness(x_init,fitness_args)
OPTS = cmaes;
%OPTS.DiagonalOnly='(1+100*N/sqrt(popsize))'; % C is diagonal for

given iterations, 1==always
OPTS.SaveVariables = 'off';
OPTS.DispModulo='5 % [0:Inf], disp messages after every i−th iteration

';
[xmin, ... % minimum search point of last iteration

fmin, ... % function value of xmin
counteval, ... % number of function evaluations done
stopflag, ... % stop criterion reached
out, ... % struct with various histories and solutions
bestever ... % struct containing overall best solution (for

convenience)

79



] = cmaes('fitness',x_init,ones(length(x_init),1)/100,OPTS,
fitness_args)

save('variables_test_sp_3_onlyreal.mat');

D.41 TEST_CONTOPT.M

% test_contopt.m: 08.01.2011, Yves Salathe
function test_contopt(n_copies,n_ancillas_A,n_ancillas_B,symmetry,

onlyreal,init_operation,init_state,method,maxFevals,parallel,
determinant,sigma_init,seed,resume)

% function to test the continuous optimization
% tries to find the optimal protocol for 3 copies of a pure state
% starts with the schmidt projection with conditional swap as the
% initial guess
% always does the same operation for Alice and Bob
% only takes into account orthogonal matrices instead of general

unitary
% operations
%
% An example of how to call this function:
%
% test_contopt(3,2,2,false,false,'rand','pure','cmaes','600000')
%
% The above command starts an optimization run on 3 copies of a pure
% state with 2 ancilla qubits per party without restricting U_A and U_B

to
% be the same and without restricting the search to orthogonal

matrices. The
% optimization starts with a random parameter vector where every

element
% is uniformly distributed in [−pi,pi]. The optimization algorithm will
% be CMA−ES and the maximal number of function evaluations will be
% restricted to 600000.

% default options
if nargin < 1 || isempty(n_copies)

n_copies = 3
end
if nargin < 2 || isempty(n_ancillas_A)

n_ancillas_A = 2
end
if nargin < 3 || isempty(n_ancillas_B)

n_ancillas_B = 2
end
if nargin < 4 || isempty(onlyreal)

onlyreal = false
end
if nargin < 5 || isempty(onlyreal)

onlyreal = false
end
if nargin < 6 || isempty(init_operation)

init_operation = 'rand'
end
if nargin < 7 || isempty(init_state)

init_state = 'pure'
end
if nargin < 8 || isempty(method)

method = 'cmaes'
end
if nargin < 9 || isempty(maxFevals)

maxFevals = 'Inf'

80



end
if nargin < 10 || isempty(parallel)

parallel = false
end
if nargin < 11

determinant = [];
end
if nargin < 12 || isempty(sigma_init)

sigma_init = 1.0e−2*ones(length(x_init),1);
end
if nargin < 13 || isempty(seed)

seed = sum(100*clock())
end
if nargin < 14 || isempty(resume)

if exist('variables.mat')
resume = true

else
resume = false

end
end

% set the seed of the random number generator
stream = RandStream('mt19937ar');
reset(stream,seed);
RandStream.setDefaultStream(stream);

phip = sqrt(.5)*(computational_basis(4,0) + computational_basis(4,3));
phim = sqrt(.5)*(computational_basis(4,0) − computational_basis(4,3));
psip = sqrt(.5)*(computational_basis(4,1) + computational_basis(4,2));
psim = sqrt(.5)*(computational_basis(4,1) − computational_basis(4,2));

if strcmp(init_state,'pure')
phip = full(phip);
phim = full(phim);
psip = full(psip);
psim = full(psim);
c = sqrt(.1);
s = sqrt(.9);
initstate = full(c*computational_basis(4,0)+s*computational_basis

(4,3));
init_F = abs(phip'*initstate)^2

else strcmp(init_state,'werner')
p = .1
initstate = (1−3*p/4)*phip*phip' + p/4*(phim*phim'+psip*psip'+psim*

psim');
init_F = abs(phip'*initstate*phip)

end

% optimization
tol = 1e−10;
dimA = 2^(n_copies+n_ancillas_A);
if onlyreal == false

mA = dimA^2;
else

if isempty(determinant)
mA = .5*dimA*(dimA−1)+1;

else
mA = .5*dimA*(dimA−1);

end
end
mB = 0;
if not(symmetry)

dimB = 2^(n_copies+n_ancillas_B);
if onlyreal == false

81



mB = dimB^2;
else

if isempty(determinant)
mB = .5*dimB*(dimB−1)+1;

else
mB = .5*dimB*(dimB−1);

end
end

end
m = mA+mB;
if strcmp(init_operation,'rand')

if onlyreal && isempty(determinant)
if symmetry

x_init = [0;2*pi*rand(m−1,1)−pi];

else
x_init = [0;2*pi*rand(mA−1,1)−pi];
x_init = [x_init;0;2*pi*rand(mB−1,1)−pi];

end
else

x_init = 2*pi*rand(m,1)−pi;
end

elseif strcmp(init_operation,'zeros')
x_init = zeros(m,1);

elseif strcmp(init_operation,'sp') && onlyreal == true
operator_fn = @(x,args) schmidt_projection_method_unitary(args);
operator_args = struct('n_untouched_copies_A',1,'

n_untouched_copies_B',1);
%operator_fn = @(x,args) identity(args);
fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B

,initstate,operator_fn,operator_args,{},{});
[Ua,Ub] = schmidt_projection_method_unitary(fitness_args);
if norm(Ua−Ub) > tol; error('operations Ua and Ub have to be

identical'); end;
if norm(Ua*Ua'−eye(size(Ua))) > tol; error('operations Ua and Ub

have to be unitary'); end;
if norm(sum(sum(abs(imag(Ua))))) > tol; error('operations Ua and Ub

have to be real valued'); end;
% find parameters for Ua
x_init = orthogonal_inverse2(Ua);
if not(symmetry)

x_init = [xinit;xinit];
end

end
size(x_init)
operator_args = init_operator_args(n_copies,n_ancillas_A,n_ancillas_B,

true,symmetry,onlyreal,determinant);
operator_fn = @unitary_continuous;
fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,operator_fn,operator_args,{},{});
init_fit = fitness(x_init,fitness_args)

resume_nr = 1;
time_start = [];
wall_time_start = [];
time_end = [];
wall_time_end = [];
if resume

local_maxFevals = maxFevals;
load('variables.mat');
maxFevals = local_maxFevals;
clear local_maxFevals
resume = true;
resume_nr = 2;

end

82



time_start = [time_start; cputime()]
wall_time_start = [wall_time_start; clock()]
save('variables.mat');
if strcmp(method,'cmaes')

OPTS = cmaes;
%OPTS.DiagonalOnly='(1+100*N/sqrt(popsize))'; % C is diagonal for

given iterations, 1==always
OPTS.SaveVariables = 'on';
if resume

OPTS.Resume = 'true';
else

OPTS.Seed = 'noreset';
end
if parallel

OPTS.EvalParallel = 'yes'
fitfun = 'fitness_parallel'

else
fitfun = 'fitness';

end
OPTS.StopFunEvals = maxFevals
OPTS.DispModulo='5 % [0:Inf], disp messages after every i−th

iteration';
[xmin, ... % minimum search point of last iteration

fmin, ... % function value of xmin
counteval, ... % number of function evaluations done
stopflag, ... % stop criterion reached
out, ... % struct with various histories and solutions
bestever ... % struct containing overall best solution (for

convenience)
] = cmaes(fitfun,x_init,sigma_init,OPTS,fitness_args)

end
time_end = [time_end; cputime()]
wall_time_end = [wall_time_end; clock()]
save('variables.mat');

D.42 TEST_SCHMIDT_PROJECTION_GENERAL.M

%test_schmidt_projection_general.m: 07.01.2011, Yves Salathe
function test_schmidt_projection_general(n_copies,n_ancillas_A,

n_ancillas_B,n_untouched_copies_A,n_untouched_copies_B)
% function to test the effect that the Schmidt projection method has on
% several copies of a certain pure state

operator_args = struct('n_untouched_copies_A',n_untouched_copies_A,'
n_untouched_copies_B',n_untouched_copies_B);

initstate = full(sqrt(.1)*computational_basis(4,0)+sqrt(.9)*
computational_basis(4,3));

phi_plus = full(sqrt(.5)*(computational_basis(4,0)+computational_basis
(4,3)));

init_F = abs(dot(initstate,phi_plus))^2
operator_fn = @(x,args) schmidt_projection_method_unitary(args);
%operator_fn = @(x,args) identity(args);
fitness_args = init_fitness_args(n_copies,n_ancillas_A,n_ancillas_B,

initstate,operator_fn,operator_args,{},{});
[fit,rho_new] = fitness({},fitness_args)

D.43 TRX_FAST_ARGS.M

83



% TrX_fast_args.m: 3.3.2011, Yves Salathe
function [sys,dim,keep,dimkeep,dimtrace,rdim,n] = TrX_fast_args(sys,dim

,dim_total)
% The function TrX_density_fast computes the partial trace over an

density
% matrix or state vector of dimension dim_total in a fast manner
% using arguments
% that have been precomputed by TrX_density_fast_args
%
% this program is derived from:
%
% TRX Partial trace
% requires: nothing
% author: Toby Cubitt
% license: GPL2
%
% RHO = TrX(PSI,SYS,DIM) traces out the subsystems spcified in
% vector SYS of state PSI (a state vector or densitry matrix) whose
% subsystem dimensions are specified by the vector DIM.

%% Copyright (C) 2004−2009 Toby Cubitt
%%
%% This program is free software; you can redistribute it and/or
%% modify it under the terms of the GNU General Public License
%% as published by the Free Software Foundation; either version 2
%% of the License, or (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
%% MA 02110−1301, USA.

% check arguments
if any(sys > length(dim)) || any(sys < 0)
error('Invalid subsystem in SYS')

end
if (length(dim) == 1 && mod(dim_total/dim,1) ~= 0)...
|| dim_total ~= prod(dim)
error('Size of state PSI inconsistent with DIM');

end

if exist('setdiff')
sys = setdiff(sys,find(dim == 1));

else
% octave
sys = complement(find(dim == 1),sys);

end

%dim = dim(find(dim ~= 1));
% 3.3.2011, Yves Salathe: logical indexing is faster than find
dim(dim == 1) = [];

% calculate systems, dimensions, etc.
n = length(dim);
rdim = dim(end:−1:1);
keep = [1:n];

84



keep(sys) = [];
dimtrace = prod(dim(sys));
dimkeep = dim_total/dimtrace;

D.44 TRX_FAST.M

% TrX_fast.m: 3.3.2011, Yves Salathe
function x = TrX_fast(p,sys,keep,dimkeep,dimtrace,rdim,n)
% this function computes the partial trace over a density matrix or
% state vector in a
% fast manner using arguments that have been precomputed by
% TrX_density_fast_args
%
% this program is derived from:
%
% TRX Partial trace
% requires: nothing
% author: Toby Cubitt
% license: GPL2
%
% RHO = TrX(PSI,SYS,DIM) traces out the subsystems spcified in
% vector SYS of state PSI (a state vector or densitry matrix) whose
% subsystem dimensions are specified by the vector DIM.

%% Copyright (C) 2004−2009 Toby Cubitt
%%
%% This program is free software; you can redistribute it and/or
%% modify it under the terms of the GNU General Public License
%% as published by the Free Software Foundation; either version 2
%% of the License, or (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
%% MA 02110−1301, USA.

if any(size(p) == 1)
% state vector
if size(p,1) == 1
p = p';

end
% reshape state vector to "reverse" ket on traced subsystems into a

bra,
% then take outer product
perm = n+1−[keep(end:−1:1),sys];
x = reshape(permute(reshape(p,rdim),perm),[dimkeep,dimtrace]);
x = x*x';

else
% density matrix

% reshape density matrix into tensor with one row and one column
index

% for each subsystem, permute traced subsystem indices to the end,

85



% reshape again so that first two indices are row and column
% multi−indices for kept subsystems and third index is a flattened

index
% for traced subsystems, then sum third index over "diagonal" entries
perm = n+1−[keep(end:−1:1),keep(end:−1:1)−n,sys,sys−n];
x = reshape(permute(reshape(p,[rdim,rdim]),perm),...

[dimkeep,dimkeep,dimtrace^2]);
x = sum(x(:,:,[1:dimtrace+1:dimtrace^2]),3);

end

D.45 TRX.M

% trx.m: not self−written
function x = TrX(p,sys,dim)

% TRX Partial trace
% requires: nothing
% author: Toby Cubitt
% license: GPL2
%
% RHO = TrX(PSI,SYS,DIM) traces out the subsystems spcified in
% vector SYS of state PSI (a state vector or densitry matrix) whose
% subsystem dimensions are specified by the vector DIM.

%% Copyright (C) 2004−2009 Toby Cubitt
%%
%% This program is free software; you can redistribute it and/or
%% modify it under the terms of the GNU General Public License
%% as published by the Free Software Foundation; either version 2
%% of the License, or (at your option) any later version.
%%
%% This program is distributed in the hope that it will be useful,
%% but WITHOUT ANY WARRANTY; without even the implied warranty of
%% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
%% GNU General Public License for more details.
%%
%% You should have received a copy of the GNU General Public License
%% along with this program; if not, write to the Free Software
%% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
%% MA 02110−1301, USA.

% check arguments
if any(sys > length(dim)) || any(sys < 0)
error('Invalid subsystem in SYS')

end
if (length(dim) == 1 && mod(length(p)/dim,1) ~= 0)...
|| length(p) ~= prod(dim)
error('Size of state PSI inconsistent with DIM');

end

% remove singleton dimensions
% 3.3.2011, Yves Salathe: check with 'exist' commented out to improve
% performance
%if exist('setdiff')
% matlab
sys = setdiff(sys,find(dim == 1));

%else

86



% octave
% sys = complement(find(dim == 1),sys);
%end

%dim = dim(find(dim ~= 1));
% 3.3.2011, Yves Salathe: logical indexing is faster than find
dim(dim == 1) = [];

% calculate systems, dimensions, etc.
n = length(dim);
rdim = dim(end:−1:1);
keep = [1:n];
keep(sys) = [];
dimtrace = prod(dim(sys));
dimkeep = length(p)/dimtrace;

if any(size(p) == 1)
% state vector
if size(p,1) == 1
p = p';

end
% reshape state vector to "reverse" ket on traced subsystems into a

bra,
% then take outer product
perm = n+1−[keep(end:−1:1),sys];
x = reshape(permute(reshape(p,rdim),perm),[dimkeep,dimtrace]);
x = x*x';

else
% density matrix

% reshape density matrix into tensor with one row and one column
index

% for each subsystem, permute traced subsystem indices to the end,
% reshape again so that first two indices are row and column
% multi−indices for kept subsystems and third index is a flattened

index
% for traced subsystems, then sum third index over "diagonal" entries
perm = n+1−[keep(end:−1:1),keep(end:−1:1)−n,sys,sys−n];
x = reshape(permute(reshape(p,[rdim,rdim]),perm),...

[dimkeep,dimkeep,dimtrace^2]);
x = sum(x(:,:,[1:dimtrace+1:dimtrace^2]),3);

end

D.46 UNITARITY_PENALTY.M

% unitarity_penality.m: 08.01.2011, Yves Salathe
function p = unitarity_penalty(x,args,Ua,Ub,U,new_global_state,rho_new,

F)
% penalizes those solutions that do not lead to a unitary matrix
p = max(max(abs(Ua*Ua'−eye(size(Ua)))));
if p > .1

p = Inf;
end
if(not(args.operator_args.symmetry))

s = max(max(abs(Ub*Ub'−eye(size(Ub)))));
if s > .1

87



p = Inf;
else

p = p + s
end

end

D.47 UNITARY_CONTINUOUS.M

% unitary_continous.m: 08.01.2011, Yves Salathe
function [Ua,Ub] = unitary_continuous(x,args)
% Build unitary operators out of the input vector x:
% The first dim_A*(dim_A+1)/2 entries of x specify the real part of
% the hermitian matrix Ha which will yield the unitary operation that

acts
% on Alice's subsystem. The succeeding dim_A*(dim_A−1)/2 entries are
% interpreted as the imaginary part of Ha.
% In the same manner, the remaining entries specify the real and

imaginary
% parts of Hb, which belongs to Bob's subsystem.
%
% x has to have length 2*n*(n+1), where n is the length of each of the

two
% subspaces of Alice and Bob
x = x(:);
if (not(args.operator_args.onlyreal))

Ua = unitary([x(1:args.operator_args.ind_max_real_A);x(
args.operator_args.ind_min_imag_A:
args.operator_args.ind_max_imag_A)]);

else
Ua = orthogonal(x(1:args.operator_args.ind_max_real_A),

args.operator_args.determinant);
end

if(not(args.operator_args.symmetry))
if not(args.operator_args.onlyreal)

Ub = unitary([x(args.operator_args.ind_min_real_B:
args.operator_args.ind_max_real_B);x(
args.operator_args.ind_min_imag_B:end)]);

else
Ub = orthogonal(x(args.operator_args.ind_min_real_B:

args.operator_args.ind_max_real_B),
args.operator_args.determinant);

end
else

Ub = Ua;
end

D.48 UNITARY_DISCRETE.M

% unitary_discrete.m: 17.05.2011, Yves Salathe
function U = unitary_discrete(x,gates_A,gates_B,dim_A,dim_B)
% build unitary operations from a set of gates. Which gates to take is
% specified by the vector x

% the length of x has to be dividable by two
n = length(x)/2;

88



if(floor(n)~=n), error('the length of the input vector x has to be
dividable by two'); end;

Ua = eye(dim_A);
Ub = eye(dim_B);

for i = 1:n
Ua = Ua*gates_A{x(i)};
Ub = Ub*gates_B{x(n+i)};

end
U = kron(Ua,Ub);

return;

D.49 UNITARY.M

% uniatary.m: 26.02.2011, Yves Salathe
function T = unitary(x)
% map the n^2 parameters in the input vector x to a nxn unitary matrix
%
% this function uses the parameterization from the paper
% C. Jarlskog,
% Recursive parametrization and invariant phases of unitary matrices
% J. Math. Phys. 47, 013507 (2006); doi:10.1063/1.2159069 (13 pages)
%
% see also:
% Kazuyuki Fujii, Kunio Funahashi, Takayuki Kobayashi,
% Jarlskog's Parametrization of Unitary Matrices and Qudit Theory
% eprint: arXiv:quant−ph/0508006v3
% (Submitted on 1 Aug 2005 (v1), last revised 23 Nov 2005 (this version

, v3))

x = x(:);
m = length(x);
dim = sqrt(m);
if (dim − floor(dim) ~= 0); error('the length m of the input vector has

to be chosen in such a way, that dim = sqrt(m) is an integer');
end;

theta = x(1:dim);
%T = spdiags(exp(1i*theta),[0],dim,dim);
T = diag(exp(1i*theta));
ind_re = dim + 1;
ind_im = .5*dim*(dim+1) + 1;
for j = 2:dim

e1 = speye(j−1);
e2 = speye(dim−j);
zer = sparse(j−1,dim−j);
zer2 = sparse(1,dim−j);
z = x(ind_re:(ind_re+j−2)) + 1i* x(ind_im:(ind_im+j−2));
n = norm(z);
z = z./n;
c = cos(n);
s = sin(n);
M = (1−c)*(z*z');
sz = s*z;
T = T*[ e1 − M, sz, zer; ...

−sz', c, zer2; ...
zer', zer2', e2];

ind_re = ind_re + j − 1;
ind_im = ind_im + j − 1;

end

89



D.50 UPPER_E.M

% upper_E.m: 11.03.2011, Yves Salathe
function E = upper_E(lambda_psi,a)
% this function calculates the upper bound for the entropy of
% entanglement that a pure state can have after application of any
% protocol without communication on a pure state with
% lambda_psi being the eigenvalues of rho_A =tr_B(|psi><psi|),
% where tr_B denotes the partial trace over Bob's subsystem.
% see exercise 12.22 in the book
% M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum

Information.
% 1st ed. Cambridge University Press, Oct. 2000. ISBN: 0521635039.
E = 0;
tol = 1e−10;
lambda_psi = lambda_psi(lambda_psi>tol);
m = length(lambda_psi);
if mod(m,2)==0

M = choose_k_from_n(m,m/2);
Mf = flipud(M);
for i = 1:size(M,1)
%for lambda_phi = 0:.01:.

lpsi1 = sort(lambda_psi(M(i,:)));
l = sum(lpsi1);
lpsi2 = sort(lambda_psi(Mf(i,:)));

% f = @(l) sum(((1−l)/l*lpsi1−lpsi2).^2)+(s−l).^2;
% gs = GlobalSearch;
% problem = createOptimProblem('fmincon','x0',.3,...
% 'objective',f,'lb',0,'ub',.5);
% [l,fval] = run(gs,problem);

if (all(abs((1−l)*lpsi1−l*lpsi2)<tol))
E = max(E,−l*log2(l)−(1−l)*log2(1−l));

end
end

end

90



Bibliography

[1] J. S. Bell. “On the Einstein-Podolsky-Rosen paradox”. In: Physics 1.3 (1964),
pp. 195–200.

[2] C. H. Bennett et al. “Teleporting an unknown quantum state via dual classical
and Einstein-Podolsky-Rosen channels”. In: Phys. Rev. Lett. 70.13 (Mar. 1993),
pp. 1895–1899. DOI: 10.1103/PhysRevLett.70.1895.

[3] C. H. Bennett and S. J. Wiesner. “Communication via one- and two-particle
operators on Einstein-Podolsky-Rosen states”. In: Phys. Rev. Lett. 69.20 (Nov.
1992), pp. 2881–2884. DOI: 10.1103/PhysRevLett.69.2881.

[4] C. H. Bennett et al. “Purification of Noisy Entanglement and Faithful Telepor-
tation via Noisy Channels”. In: Phys. Rev. Lett. 76.5 (Jan. 1996), pp. 722–725.
DOI: 10.1103/PhysRevLett.76.722.

[5] C. H. Bennett et al. “Mixed-state entanglement and quantum error correction”.
In: Phys. Rev. A 54.5 (Nov. 1996), pp. 3824–3851. DOI: 10.1103/PhysRevA.
54.3824.

[6] D. Deutsch et al. “Quantum Privacy Amplification and the Security of Quantum
Cryptography over Noisy Channels”. In: Phys. Rev. Lett. 77.13 (Sept. 1996),
pp. 2818–2821. DOI: 10.1103/PhysRevLett.77.2818.

[7] A. Ambainis, A. Smith, and K. Yang. “Extracting quantum entanglement (gen-
eral entanglement purification protocols)”. In: Computational Complexity, 2002.
Proceedings. 17th IEEE Annual Conference on. 2002, pp. 82 –91. DOI: 10.
1109/CCC.2002.1004345.

[8] A. Ambainis and K. Yang. “Towards the classical communication complexity of
entanglement distillation protocols with incomplete information”. In: Computa-
tional Complexity, 2004. Proceedings. 19th IEEE Annual Conference on. June
2004, pp. 305 –319. DOI: 10.1109/CCC.2004.1313853.

[9] N. Hansen and A. Ostermeier. “Completely Derandomized Self-Adaptation in
Evolution Strategies”. In: Evol. Comput. 9.2 (2001), pp. 159–195. ISSN: 1063-
6560. DOI: 10.1162/106365601750190398.

[10] A. Einstein, B. Podolsky, and N. Rosen. “Can Quantum-Mechanical Descrip-
tion of Physical Reality Be Considered Complete?” In: Physical Review Online
Archive (Prola) 47.10 (May 1935), pp. 777–780. DOI: 10.1103/PhysRev.47.
777.

[11] C. H. Bennet and G. Brassard. “Quantum Cryptography: Public Key Distribu-
tion and Coin Tossing”. In: International Conference on Computers, Systems &
Signal Processing Bangalore, India. 1984.

[12] C. H. Bennett et al. “Concentrating partial entanglement by local operations”.
In: Phys. Rev. A 53.4 (Apr. 1996), pp. 2046–2052. DOI: 10.1103/PhysRevA.
53.2046.

91

http://dx.doi.org/10.1103/PhysRevLett.70.1895
http://dx.doi.org/10.1103/PhysRevLett.69.2881
http://dx.doi.org/10.1103/PhysRevLett.76.722
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevA.54.3824
http://dx.doi.org/10.1103/PhysRevLett.77.2818
http://dx.doi.org/10.1109/CCC.2002.1004345
http://dx.doi.org/10.1109/CCC.2002.1004345
http://dx.doi.org/10.1109/CCC.2004.1313853
http://dx.doi.org/10.1162/106365601750190398
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRev.47.777
http://dx.doi.org/10.1103/PhysRevA.53.2046
http://dx.doi.org/10.1103/PhysRevA.53.2046


[13] H.-K. Lo and S. Popescu. “Concentrating entanglement by local actions: Beyond
mean values”. In: Phys. Rev. A 63.2 (Jan. 2001), p. 022301. DOI: 10.1103/
PhysRevA.63.022301.

[14] D. D. Dukaric and S. Wolf. “A Limit on Non-Locality Distillation”. In: arXiv
eprints (Aug. 2008). arXiv:quant-ph/0808.3317.

[15] A. J. Short. “No Deterministic Purification for Two Copies of a Noisy Entan-
gled State”. In: Phys. Rev. Lett. 102.18 (May 2009), p. 180502. DOI: 10.1103/
PhysRevLett.102.180502.

[16] A. Messiah. Quantum Mechanics, Two Volumes Bound as One. Dover Publica-
tions Inc., Mineola, New York, 1999.

[17] C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics (2 vol. set).
Wiley-Interscience, Oct. 2006. ISBN: 0471569526.

[18] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Informa-
tion. 1st ed. Cambridge University Press, Oct. 2000. ISBN: 0521635039.

[19] P. J. Mohr, B. N. Taylor, and D. B. Newell. “CODATA recommended values of
the fundamental physical constants: 2006”. In: Reviews of Modern Physics 80.2,
633 (2008), p. 633. DOI: 10.1103/RevModPhys.80.633.

[20] A. Aspect, J. Dalibard, and G. Roger. “Experimental Test of Bell’s Inequali-
ties Using Time- Varying Analyzers”. In: Phys. Rev. Lett. 49.25 (Dec. 1982),
pp. 1804–1807. DOI: 10.1103/PhysRevLett.49.1804.

[21] J. Grondalski, D. M. Etlinger, and D. F. V. James. “The fully entangled fraction
as an inclusive measure of entanglement applications”. In: Physics Letters A
300.6 (2002), pp. 573 –580. ISSN: 0375-9601. DOI: 10.1016/S0375-9601(02
)00884-8.

[22] M.-J. Zhao and Z.-X. W. Zong-Guo Li Shao-Ming Fei. “A Note on Fully Entan-
gled Fraction”. In: arXiv eprints (June 2010). arXiv:1006.3502v2.

[23] S. Bose, V. Vedral, and P. L. Knight. “Purification via entanglement swapping
and conserved entanglement”. In: Phys. Rev. A 60.1 (July 1999), pp. 194–197.
DOI: 10.1103/PhysRevA.60.194.

[24] M. A. Nielsen. “Conditions for a Class of Entanglement Transformations”. In:
Phys. Rev. Lett. 83.2 (July 1999), pp. 436–439. DOI: 10.1103/PhysRevLett.
83.436.

[25] A. Mordecai. Nonlinear Programming: Analysis and Methods. Dover Publish-
ing, Oct. 2003. ISBN: 0-486-43227-0.

[26] J. B. Lasserre. “Global Optimization with Polynomials and the Problem of Mo-
ments”. In: SIAM Journal on Optimization 11.3 (2001), pp. 796–817. DOI: 10.
1137/S1052623400366802.

[27] H. Waki et al. “Sums of Squares and Semidefinite Program Relaxations for Poly-
nomial Optimization Problems with Structured Sparsity”. In: SIAM Journal on
Optimization 17.1 (2006), pp. 218–242. DOI: 10.1137/050623802.

[28] H. Waki et al. “Algorithm 883: SparsePOP—A Sparse Semidefinite Program-
ming Relaxation of Polynomial Optimization Problems”. In: ACM Trans. Math.
Softw. 35 (2 July 2008), 15:1–15:13. ISSN: 0098-3500. DOI: 10 . 1145 /
1377612.1377619.

[29] K. Fujii, K. Funahashi, and T. Kobayashi. “Jarlskog’s Parametrization of Unitary
Matrices and Qudit Theory”. In: ArXiv Quantum Physics e-prints (July 2005).
arXiv:quant-ph/0508006.

92

http://dx.doi.org/10.1103/PhysRevA.63.022301
http://dx.doi.org/10.1103/PhysRevA.63.022301
http://arxiv.org/abs/quant-ph/0808.3317
http://dx.doi.org/10.1103/PhysRevLett.102.180502
http://dx.doi.org/10.1103/PhysRevLett.102.180502
http://dx.doi.org/10.1103/RevModPhys.80.633
http://dx.doi.org/10.1103/PhysRevLett.49.1804
http://dx.doi.org/10.1016/S0375-9601(02)00884-8
http://dx.doi.org/10.1016/S0375-9601(02)00884-8
http://arxiv.org/abs/1006.3502v2
http://dx.doi.org/10.1103/PhysRevA.60.194
http://dx.doi.org/10.1103/PhysRevLett.83.436
http://dx.doi.org/10.1103/PhysRevLett.83.436
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1137/S1052623400366802
http://dx.doi.org/10.1137/050623802
http://dx.doi.org/10.1145/1377612.1377619
http://dx.doi.org/10.1145/1377612.1377619
http://arxiv.org/abs/quant-ph/0508006


[30] C. Jarlskog. “Recursive parametrization and invariant phases of unitary matri-
ces”. In: Journal of Mathematical Physics 47.1, 013507 (2006), p. 013507. DOI:
10.1063/1.2159069.

[31] R. C. Raffenetti and K. Ruedenberg. “Parametrization of an orthogonal matrix
in terms of generalized eulerian angles”. In: International Journal of Quantum
Chemistry 4.S3B (1969), pp. 625–634. ISSN: 1097-461X. DOI: 10.1002/qua.
560040725.

[32] D. K. Hoffman, R. C. Raffenetti, and K. Ruedenberg. “Generalization of Euler
Angles to N-Dimensional Orthogonal Matrices”. In: Journal of Mathematical
Physics 13.4 (1972), pp. 528–533. DOI: 10.1063/1.1666011.

[33] N. Hansen. “The CMA Evolution Strategy: a comparing review”. In: Towards
a new evolutionary computation. Advances on estimation of distribution algo-
rithms. Ed. by J. Lozano et al. Springer, 2006, pp. 75–102.

[34] I. Rechenberg. Evolutionsstrategie: Optimierung technischer Systeme nach
Prinzipien der biologischen Evolution. Stuttgart: Fromman-Holzboog, 1973.

[35] H.-P. Schwefel. “Evolutionsstrategie und numerische Optimierung”. Dr.-
Ing. Dissertation. Technische Universität Berlin,Fachbereich Verfahrenstechnik,
1975.

[36] N. Hansen, S. Muller, and P. Koumoutsakos. “Reducing the time complexity of
the derandomized Evolution Strategy with covariance matrix adaptation (CMA-
ES)”. In: Evolutionary Computation 11.1 (2003), pp. 1–18.

[37] V. Strassen. “Gaussian elimination is not optimal”. In: Numerische Mathematik
13 (4 1969). 10.1007/BF02165411, pp. 354–356. ISSN: 0029-599X.

[38] P. G. Kwiat et al. “Experimental entanglement distillation and ‘hidden’ non-
locality”. In: Nature 409.6823 (2001), pp. 1014–1017. DOI: 10.1038/3505901
7.

[39] S. Popescu and D. Rohrlich. “The joy of entanglement”. In: Introduction to
Quantum Computation. Ed. by H.-K. Lo, S. Popescu, and T. P. Spiller. Sin-
gapore: World-Scientific, 1998, pp. 29–48.

[40] J. Preskill. Lecture Notes for Physics 229: Quantum Information and Computa-
tion.

[41] N. Gisin. “Hidden quantum nonlocality revealed by local filters”. In: Physics
Letters A 210.3 (1996), pp. 151 –156. ISSN: 0375-9601. DOI: 10.1016/S0375-
9601(96)80001-6.

[42] W. Dür and H.-J. Briegel. “Purification and Distillation”. In: Lectures on Quan-
tum Information. Ed. by D. Bruß and G. Leuchs. Wiley-VCH, 2007, pp. 177–
208. ISBN: 3527405275.

[43] W. Dür and H.-J. Briegel. “Entanglement Purification for Quantum Compu-
tation”. In: Phys. Rev. Lett. 90.6 (Feb. 2003), p. 067901. DOI: 10 . 1103 /
PhysRevLett.90.067901.

[44] C. Macchiavello. “On the analytical convergence of the QPA procedure”. In:
Physics Letters A 246.5 (1998), pp. 385 –388. ISSN: 0375-9601. DOI: 10.1016/
S0375-9601(98)00550-7.

[45] K. Yang. “On the communication complexity of correlation and entanglement
distillation”. AAI3126935. PhD thesis. Pittsburgh, PA, USA, 2004.

[46] H. Aschauer. “Quantum communication in noisy environments”. PhD thesis.
Ludwig Maximilians Universität München, 2004.

93

http://dx.doi.org/10.1063/1.2159069
http://dx.doi.org/10.1002/qua.560040725
http://dx.doi.org/10.1002/qua.560040725
http://dx.doi.org/10.1063/1.1666011
http://dx.doi.org/10.1038/35059017
http://dx.doi.org/10.1038/35059017
http://dx.doi.org/10.1016/S0375-9601(96)80001-6
http://dx.doi.org/10.1016/S0375-9601(96)80001-6
http://dx.doi.org/10.1103/PhysRevLett.90.067901
http://dx.doi.org/10.1103/PhysRevLett.90.067901
http://dx.doi.org/10.1016/S0375-9601(98)00550-7
http://dx.doi.org/10.1016/S0375-9601(98)00550-7


[47] N. Hansen. CMA Evolution Strategy Source Code. http://www.lri.fr/
~hansen/cmaes_inmatlab.html. Accessed March 15, 2011.

94

http://www.lri.fr/~hansen/cmaes_inmatlab.html
http://www.lri.fr/~hansen/cmaes_inmatlab.html

	Contents
	Introduction
	Foundations
	The Qubit
	Many Qubits: Combined Systems
	Measurements, Mixed States and the Partial Trace
	Entanglement

	Entanglement Measures
	Local Operations and Classical Communication
	Entropy of Entanglement
	Fidelity and the Fully Entangled Fraction

	Entanglement Distillation Protocols
	Single Pair Purification
	Protocols without communication
	General Limitations and Optimality
	A Note On The Schmidt Projection Method For Two Copies

	Numerical Optimization
	Parameterization of Unitary Matrices
	Black-Box Optimization With CMA-ES
	Results for 3 copies of a pure initial state with 2 ancilla qubits per party
	Optimization over a Single Orthogonal Matrix
	Unrestricted Optimization over 2 Unitary Matrices

	Results for 2 copies of a pure initial state
	Results for 3 copies of a Werner state

	Conclusions
	Proof of Theorem 4.3.1
	Proof of Theorem 4.4.1
	Tables
	Entanglement Distillation Protocols
	Limits to Distillability
	Optimization Runs

	Source Code
	angle_crossover.m
	choose_k_from_n.m
	computational_basis.m
	conditional_swap.m
	crossover.m
	decode_discrete_angles.m
	entropy_of_entanglement.m
	expected_E.m
	fitness.m
	gates.m
	hermitian_inverse.m
	hermitian.m
	identity.m
	init_fitness_args.m
	init_operator_args.m
	matrix_differences.m
	matrix_distance.m
	matrix_distance_to_fun.m
	measurement_unitary.m
	operator_any.m
	operator_normalized.m
	orthogonal_deriv.m
	orthogonal_discrete.m
	orthogonal_inverse.m
	orthogonal.m
	penalty_ident.m
	permutation.m
	plotcmaesdat_fitness.m
	plot_fidelity.m
	qubit_states.m
	read_ancilla_states.m
	schmidt_projection_measurement_unitary.m
	schmidt_projection_method_unitary.m
	skew_symmetric_inverse.m
	skew_symmetric.m
	standardization_unitary.m
	symmetric.m
	test_contopt_3copies.m
	test_contopt_3copies_symmetry.m
	test_contopt_3copies_symmetry_onlyreal.m
	test_contopt.m
	test_schmidt_projection_general.m
	TrX_fast_args.m
	TrX_fast.m
	TrX.m
	unitarity_penalty.m
	unitary_continuous.m
	unitary_discrete.m
	unitary.m
	upper_E.m

	Bibliography

